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Medical imaging
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Radiomics: Images Are More than
Pictures, They Are Data’
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R Gillies, Radiology (2015) 48: 441-446.
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Radiomics : from segmentation to prediction
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From prediction to personalized medicine

Personalized Medicine - The Goal
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https://www.pennside.com/biomarker-companion-diagnostics-primer

Prognostic markers give information about :
* Likely course of the disease in an untreated individual, or
* Likely course of disease regardless of treatment.

Identify patients who would not benefit from excessive treatment.

Predictive markers give information about :

* The expected benefit of a specific treatment, or

* The comparative benefits among two or more treatments.
Identify patients suited for a specific treatment, or help identify
which treatment option might be best for a specific patient.
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Applications of radiomics

Diagnostic / Characterization studies Prognostic / Predictive investigations
Benign vs malignant lung nodules Pathological complete response
Non-invasive lung cancer histology Overall survival

Oropharynx cancer HPV positivity Progression or metastases
Associations with genetic mutation (EGFR, Local and nodal recurrences

KRAS)

Pathological lymph node metastases
Tumour grade classification

Numerous recent reviews available, e.g. :

Liu et al., “The Applications of Radiomics in Precision
Diagnosis and Treatment of Oncology: Opportunities and
Challenges”, Theranostics 9 (2019) 1303.
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Overall survival in NSCLC

“Distributed Radiomics” follow-up study

a Kaplan-Meier radiomics signature
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Information from the tumour-parenchyma interface
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(2018) PLOSONE 13:e0206108. https://doi.org/10.1371/journal.pone.0206108
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Correlates in automated body composition analysis

Conventional manual body composition segmentation

Subcutaneous adipose

Skeletal muscle area Visceral adipose Tissue fiaiin

4 4

Cohort split, 75% training - 25% test set

Radiomics feature extraction: three compartments

113 features extracted per compartment (339 total)

Creating 4 prediction models for 90-day and 2-year mortality

4 4 4 3

Clinical variables Clinical variables Clinical variables Clinical variables
Feature selection
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Feature clusters and signature equivalences

(Image from Y. Balagurunathan et al.)
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Switching to deep learning neural networks

INPUT IMAGE WITH ANNOTATIONS ACTIVATION HEATMAPS

Hosny et al., Deep learning for lung cancer prognostication: A retrospective
N multi-cohort radiomics study. PLOS Medicine 15(2018): e1002711.
e https://doi.org/10.1371/journal.pmed.1002711
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Switching to deep learning neural networks

Follow-up 1 Follow-up 2 Follow-up 3
Pretreatment @ 1 month @ 3 months @ 6 months
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Patient 1

Figure 1.

Serial patient scans. Representative
CT images of patients with stage Il
nonsurgical NSCLC before radiation

therapy and 1, 3, and 6 months
following radiation therapy. A
single click seed point identifies the
input image patch of the neural
network (defined by the dotted
white line).

Patient 2
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Pre-treat CT + 1m + Pre-treat CT only

3m + 6m re-scans AUC = 0.58

Patient 3
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Precision Medicine and Imaging Clinical Results: Deep learn |
Cancer
Research

g models using time series scans were
significantly predictivg of survival and cancer-specific out-

Deep Learning Predicts Lung Cancer Treatment comes (progression, dlistant metastases, and local-regional

Response from Serial Medical Imaging = ™ recurrence). Model pprformance was enhanced with each
_ _ _ _ o~ additional follg nto the CNN model (e.g., 2-year
Yiwen Xu', Ahmed Hosny"?, Roman Zeleznik"?, Chintan Parmar', Thibaud Coroller!, | G

Idalld Fl’anCO1, Raymond H. Mak1, and HugO JWL. Aerts1,2,3 Ovel'all Slll'VlV&l AUC — 0.74 P < 0.05). 'Ihe Il'lOdelS Stl'atlﬁed

DOI: 10.1158/1078-0432.CCR-18-2495
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Summary

* Medical images can be quantitatively analysed with machine algorithms and Al
that help us search for potential outcome markers.

* Radiomic prognostic and predictive markers need to be robustly tested and
watchfully used (i.e. repeatability, reproducibility & generalizability).

* Radiomics models need to be independently verified and then repeatedly
validated across multiple clinics.

* “Distributed methods” are potentially helpful to overcome concerns about
sharing of patients’ clinical data and images.

* “Deep learning” could lead radiomics into some added clinical value; but we need
more images, better follow-ups, robust method and relevant clinical questions.
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* Countries where | lived in and worked as a medical physicist, before choosing NL as my home.
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