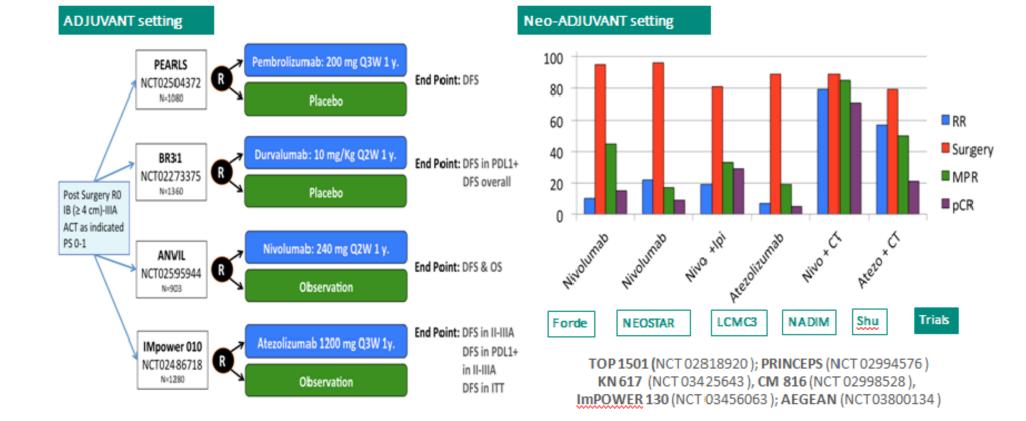


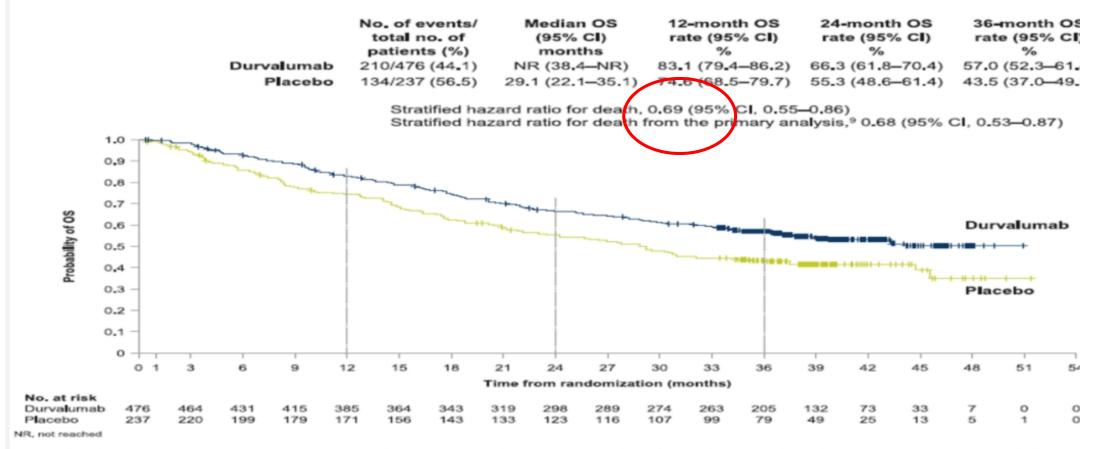
Immunotherapie:


18:00 – 18:25 uur Immunotherapie Dr. Gerben Bootsma, longarts, Zuyderland MC SCLC / mesothelioom 18:25 – 18:50 uur Dr. Ben van den Borne, longarts, Catharina ziekenhuis 18:50 – 19:15 uur RT en combinatie immunotherapie Prof. dr. Dirk de Ruysscher, radiotherapeut-oncoloog MAASTRO Clinic

Immunotherapie:

Immunotherapie in vroege stadia

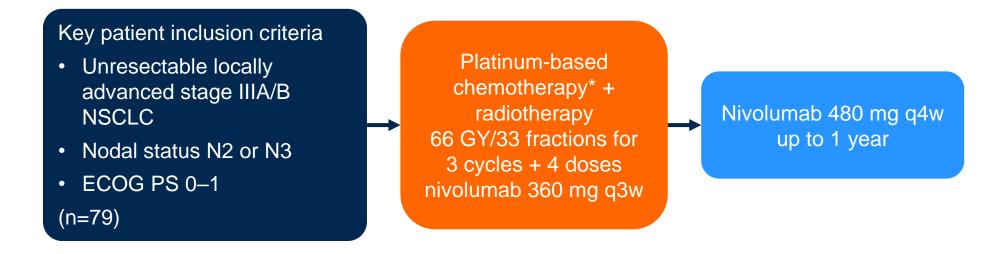
Waiting for.....IMMUNOTHERAPY in EARLY STAGE



Stadium III NSCLC adjuvant IT

Dirk..

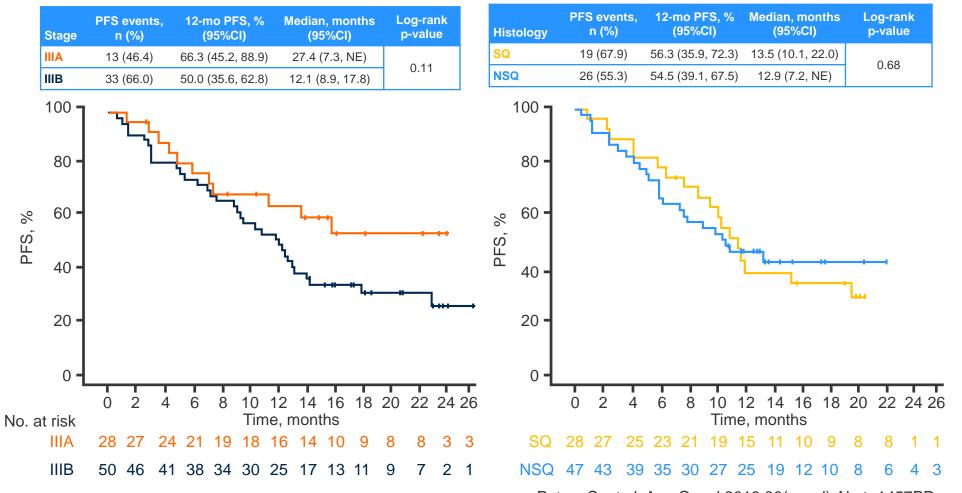
CURRENT SOC IN LA PACIFIC SURVIVAL UPDATE ASCO 2019


Figure 3. Updated OS in the ITT population

· Updated subgroup analysis of OS is presented in Figure 4 and was consistent with that reported at the time of the primary OS

1457PD: Efficacy evaluation of concurrent nivolumab addition to a first-line, concurrent chemoradiotherapy regimen in unresectable locally advanced NSCLC – Results from the European Thoracic Oncology Platform (ETOP 6-14) NICOLAS phase II trial – Peters S, et al

- Study objective
 - To evaluate the efficacy of nivolumab combined with 1L concurrent chemoradiotherapy in patients with unresectable locally advanced NSCLC


Primary endpoints

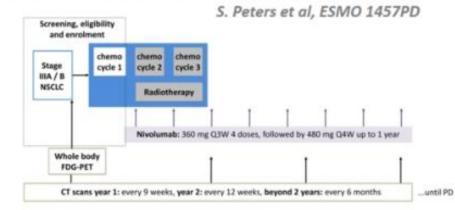
 Grade ≥3 pneumonitis-free rate, 1-year PFS rate

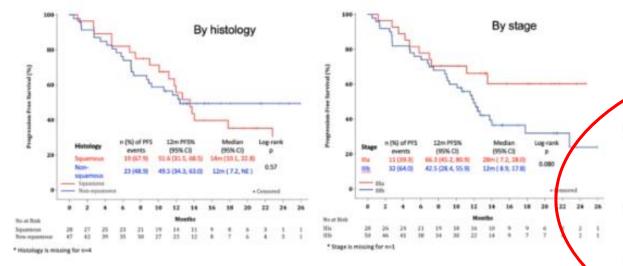
Secondary endpoints

 Time to first grade ≥3 pneumonitis, ORR, OS, time-to-treatment failure, safety 1457PD: Efficacy evaluation of concurrent nivolumab addition to a first-line, concurrent chemoradiotherapy regimen in unresectable locally advanced NSCLC – Results from the European Thoracic Oncology Platform (ETOP 6-14) NICOLAS phase II trial – Peters S, et al

• Key results

PFS: Stage


Peters S, et al. Ann Oncol 2019;30(suppl):Abstr 1457PD


PFS: Histology

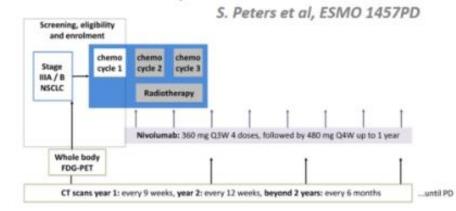
1457PD: Efficacy evaluation of concurrent nivolumab addition to a first-line, concurrent chemoradiotherapy regimen in unresectable locally advanced NSCLC – Results from the European Thoracic Oncology Platform (ETOP 6-14) NICOLAS phase II trial – Peters S, et al

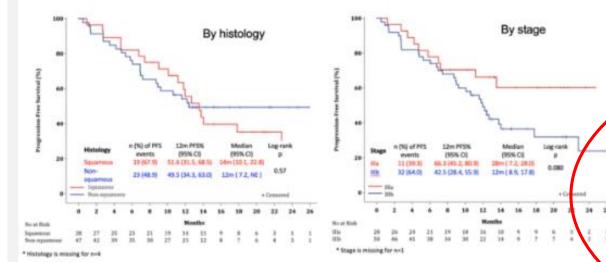
- Key results (cont.)
 - Overall, pneumonitis was reported by 34 patients (7 grade 3, 1 grade 5), oesophagitis by 24 patients (5 grade 3) and dyspnoea by 27 patients (2 grade 3)
 - In total, 240 nivolumab TRAEs were reported; 26 grade 3, 5 grade 4 and 4 grade 5 (colitis, pulmonary fibrosis, autoimmune disorder, pneumonitis). Of these, 7% (17/240 TRAEs) led to permanent discontinuation
- Conclusions
 - In patients with unresectable locally advanced NSCLC combining nivolumab with concurrent chemoradiation is feasible, without any unexpected safety signal
 - The PFS observed for combining nivolumab with concomitant definitive chemoradiation as 1L therapy compares favourably to other studies in the same patient population

Efficacy evaluation of concurrent nivolumab addition to a firstline, concurrent chemo-radiotherapy regimen in unresectable locally advanced NSCLC –NICOLAS phase II trial.

Primary endpoints:

- Pneumonitis-free rate of grade ≥ 3 (CTCAE V4.0) any time during 6 months post radiotherapy.
- Hierarchically tested: 1-year progression-free survival (PFS) (from chemotherapy start)


Hierarchical design: <u>IF safety proven</u> → Efficacy evaluation:


- 1-year PFS, sample size n=74
- H₀: PFS₀ ≤ 45% vs H₁: PFS₁ > 60% (1-sided alpha=5%, power=83%)
- Success rule: at least 41 patients reach 1-year without PFS event (i.e., maximum 33 PFS events)

Authors Conclusions

- Based on the formal hierarchical efficacy analysis, we cannot reject the null hypothesis of 1-year PFS rate ≤45% versus 60% (p=0.23).
- Overall (N=79 patients), the estimate of 1-year survival rate is 50.1% (95% CI: 38.3, 60.7%).
- NICOLAS PFS with a median of 12.7 months, compares favourably to studies in the same population, all reporting less than 12 months median.

Efficacy evaluation of concurrent nivolumab addition to a firstline, concurrent chemo-radiotherapy regimen in unresectable locally advanced NSCLC –NICOLAS phase II trial.

Primary endpoints:

- Pneumonitis-free rate of grade ≥ 3 (CTCAE V4.0) any time during 6 months post radiotherapy.
- Hierarchically tested: 1-year progression-free survival (PFS) (from chemotherapy start)

Hierarchical design: <u>IF safety proven</u> → Efficacy evaluation:

- 1-year PFS, sample size n=74
- H₀: PFS₀ ≤ 45% vs H₁: PFS₁ > 60% (1-sided alpha=5%, power=83%)
- Success rule: at least 41 patients reach 1-year without PFS event (i.e., maximum 33 PFS events)

Discussant Conclusions

- The study failed the formal planned hierarchical efficacy analysis and not exciting efficacy data
- Pneumonitis: 7/79 had grade 3 and 1 grade 5 AND overall toxicity was however not negligible
- In the future we need to strictly enforce exact T and N staging in all CT/RT trials this includes not only PET-CT but also EBUS/mediastinal staging

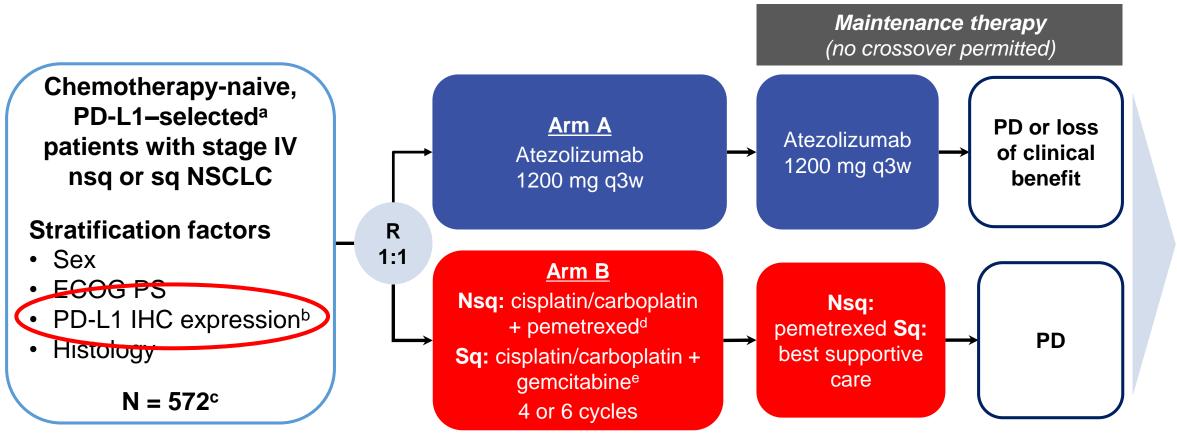
St IV NSCLC

LBA78

IMpower110: Interim OS Analysis of a Phase III Study of Atezolizumab (atezo) vs Platinum-Based Chemotherapy (chemo) as 1L Treatment (tx) in PD-L1–selected NSCLC

David R Spigel,¹ Filippo De Marinis,² Giuseppe Giaccone,³ Niels Reinmuth,⁴ Alain Vergnenegre,⁵ Carlos Henrique Barrios,⁶ Masahiro Morise,⁷ Enriqueta Felip,⁸ Zoran Andric,⁹ Sarayut Geater,¹⁰ Mustafa Özgüroğlu,¹¹ Simonetta Mocci,¹² Mark McCleland,¹² Ida Enquist,¹² Kim Komatsubara,¹² Yu Deng,¹² Hiroshi Kuriki,¹² Xiaohui Wen,¹² Jacek Jassem,¹³ Roy S Herbst¹⁴

¹Sarah Cannon Research Institute, Nashville, TN, USA; ²European Institute of Oncology, Milan, Italy; ³Weill Cornell Medical Center, New York, NY, USA; ⁴Asklepios Lung Clinic, Munich-Gauting, Germany; ⁵Centro de Pesquisa Clínica, Hospital São Lucas, Porto Alegre, Brazil; ⁶PUCRS School of Medicine, Porto Alegre, Brazil; ⁷Nagoya University Graduate School of Medicine, Aichi, Japan; ⁸Vall d'Hebron University Hospital, Barcelona, Spain; ⁹Clinical Hospital Center Bezanijska Kosa, Belgrade, Serbia; ¹⁰Prince of Songkla University – Hat Yai, Songkhla, Thailand; ¹¹Istanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, Istanbul, Turkey; ¹²Genentech, Inc., South San Francisco, CA, USA; ¹³Medical University of Gdansk, Gdansk, Poland; ¹⁴Yale School of Medicine, New Haven, CT

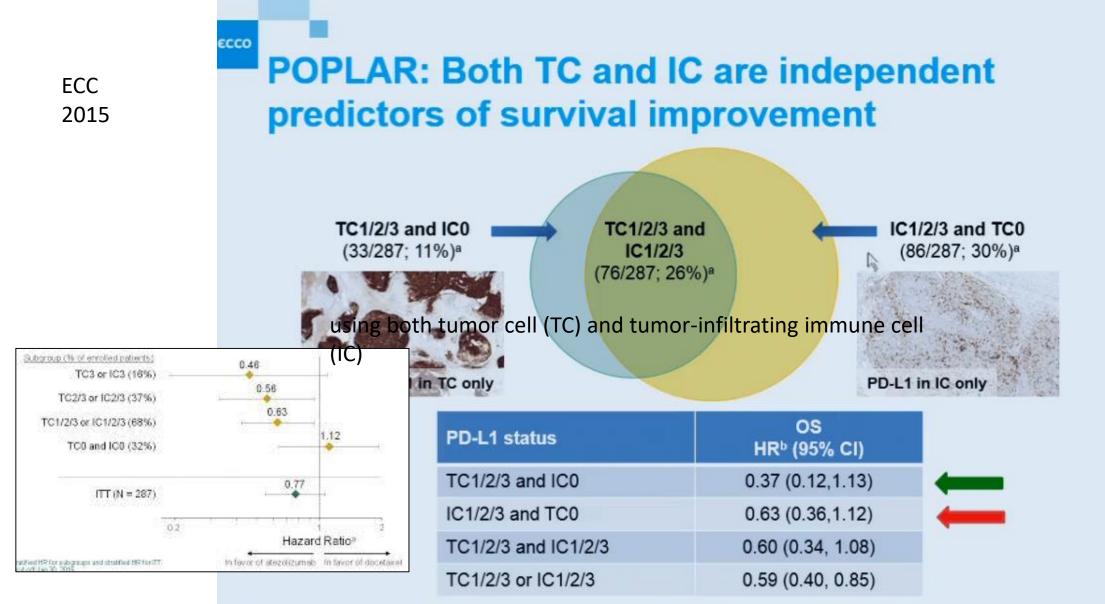

Background

- Anti–PD-1 monotherapy or PD-L1/PD-1 inhibitors in combination with platinumbased doublet chemotherapy, with or without bevacizumab, are 1L standards of care in metastatic NSCLC^{1,2}
 - Tumour PD-L1 expression level and histology are used to determine treatment regimens
- In the Phase II BIRCH study, atezolizumab monotherapy demonstrated tolerability and efficacy in PD-L1–selected patients with advanced NSCLC across lines of therapy³
- The Phase III IMpower110 study (NCT02409342) evaluates atezolizumab monotherapy as 1L treatment in PD-L1—selected patients, independent of tumour histology
 - We report results of the interim OS analysis in IMpower110

1L, first-line.

1. NCCN Clinical Practice Guidelines. NSCLC. V7.2019; 2. Planchard D, et al. Ann Oncol. 2018;29(Suppl 4):iv192-iv237; 3. Peters S, et al. J Clin Oncol. 2017;35(24):2781-2789.

IMpower110 Study Design

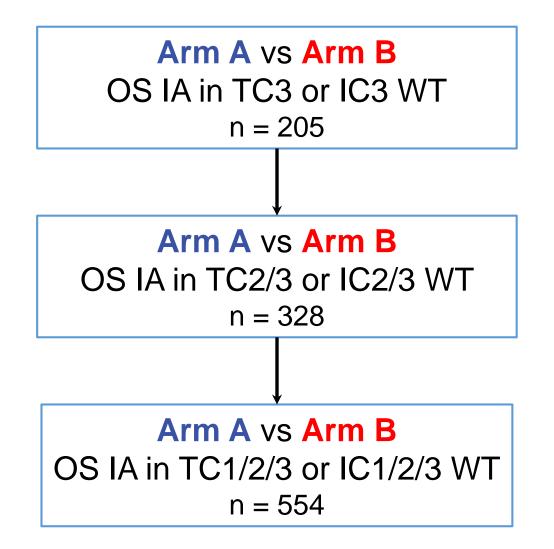

Survival follow-up

- Primary endpoint: OS in WT population^f
- Key secondary endpoints: investigator-assessed PFS, ORR and DOR (per RECIST version 1.1)

IC, tumour-infiltrating immune cells; IHC, immunohistochemistry; nsq, non-squamous; PD, progressive disease; q3w, every 3 weeks; R, randomised; sq, squamous; TC, tumour cells; WT, wild-type. ^a PD-L1 expression (VENTANA SP142 IHC assay) \geq 1% on TC or IC. ^b TC1/2/3 and any IC vs TC0 and IC1/2/3. ^c 554 patients in the WT population. ^d Cisplatin 75 mg/m² or carboplatin area under the curve (AUC) 6 + pemetrexed 500 mg/m² IV q3w. ^e Cisplatin 75 mg/m² + gemcitabine 1250 mg/m² or carboplatin AUC 5 + gemcitabine 1000 mg/m² IV q3w. ^f WT population excludes patients with *EGFR*+ and/or *ALK*+ NSCLC.

PD-L1 analysis

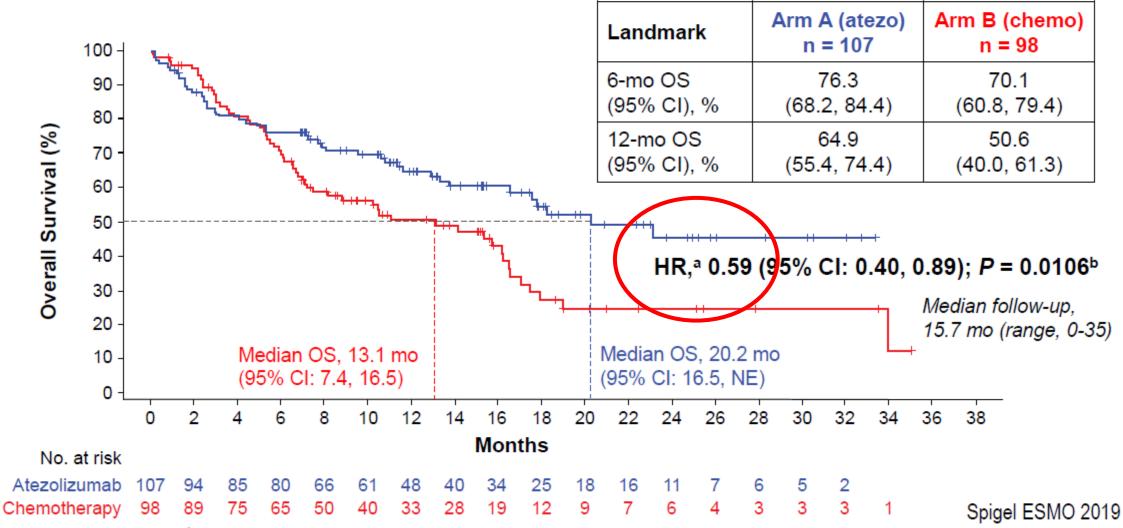
Agent	Assay	Analysis	Definition of positivity	PD-L1 expression
Nivolumab (anti-PD-1) ^{1–3}	Dako automated IHC assay (28-8 rabbit antibody) Analytically validated	Original or new FFPE, tumor cells	 1% and 5% cutoff among >100 evaluable tumor cells 	Pretreated • 56%: 1% cutoff • 49%: 5% cutoff 1*t line • 70%: 1% cutoff
Pembrolizumab (anti-PD-1) ⁶	Dako automated IHC assay (22C3 mouse antibody)	Contemporaneous tumor biopsy	 % of neoplastic cells with membranous PD-L1 staining at <1%, 1-49%, and ≥50% 	• 23.2%: ≥50% • 37.6%: 1-49% • 39.2: <1%
Atezolızumab (antl-PD-L1) ⁷	Ventana automated clinical research IHC assay	Original or new FFPE, Imprune and tumor cells	 TC3 or IC3 = TC ≥50% or IC ≥10% PD-L1+ TC2/3 or IC 2/3 = TC or IC ≥5% PD-L1+ TC1/2/3 or IC 1/2/3 = TC or IC ≥1% PD-L1+ TC0 and IC0 = <1% PD-L1+ 	 16%: TC3 or IC3 37%: TC2/3 or IC 2/3 68%: TC1/2/3 or IC 1/2/ 32%: TC0 and IC0
Durvalumab (antl-PD-L1) ^{8,9}	First-generation or Ventana IHC Automated Assay (in development)	Original or new FFPE, tumor cells	Membranous staining in 225% of tumor cells at any intensity	- 48%
Aveluma (anti-PD	usin	g both tumor (cell (TC) and	
		6	mune cell (IC)	



"Number of patients with both TC and IC cutoff levels ≥ 1 divided by the total number of patients in the study; Percentage of total study population. ^bUnstratiled HR. Data cut-off May 8, 2015.

Vansteenkiste J. et al., atezolizumab in NSCLC (POPLAR)

23


Statistical Testing Plan

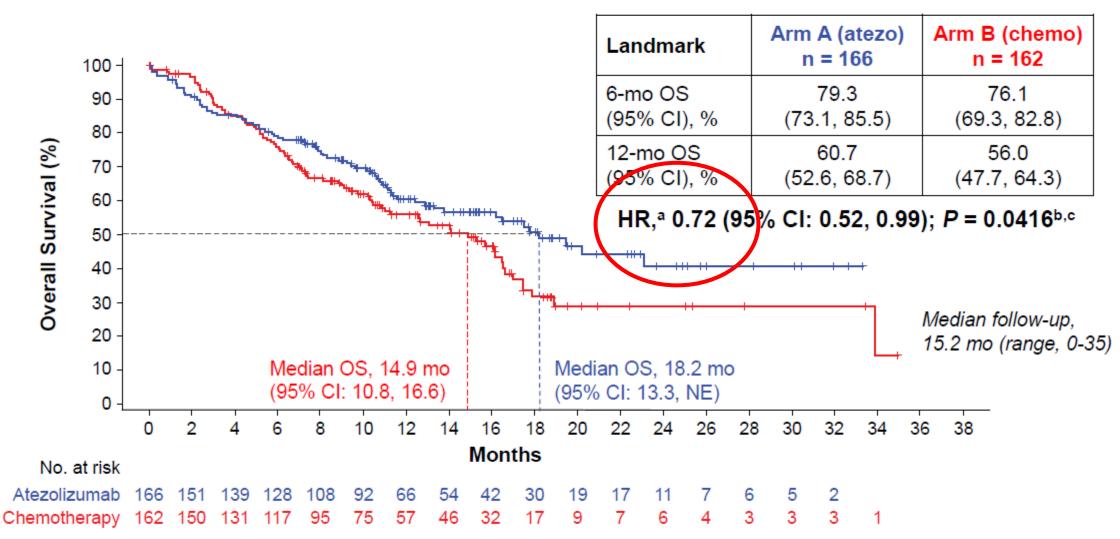
- The primary OS endpoint was tested hierarchically in the following order: TC3 or IC3 WT → TC2/3 or IC2/3 WT → TC1/2/3 or IC1/2/3 WT
- The secondary endpoint of PFS can be formally tested only when the primary endpoint is positive among all 3 populations

OS: TC3 or IC3 WT

NE, not estimable. ^a Stratified. ^b Stratified log-rank. Data cutoff: 10 September 2018. Spigel et al. IMpower110 Interim OS Analysis https://bit.ly/2lxRNHQ

TC3 or IC3 WT: OS in Key Subgroups

				<u>Median</u>	<u>OS, mo</u>
<u>Subgroup</u> ^a	<u>n (%)</u>		<u>OS HR (95% CI)</u> ⁵	<u>Arm A</u>	<u>Arm B</u>
< 65 years	102 (49.8)	⊢	0.59 (0.34, 1.04)	NE	13.1
65-74 years	80 (39.0)	⊢−	0.63 (0.34, 1.19)	17.8	10.4
75-84 years	22 (10.7)		1.04 (0.19, 5.70)	NE	16.2
Male	143 (69.8)	⊢	0.57 (0.35, 0.93)	23.1	13.1
Female	62 (30.2)		0.69 (0.34, 1.39)	17.8	14.1
White	169 (82.4)	⊢	0.67 (0.44, 1.03)	17.8	13.1
Asian	35 (17.1)	▶ ↓ ↓	0.38 (0.13, 1.13)	NE	14.1
Never used tobacco	24 (11.7)	⊢	1.83 (0.63, 5.31)	8.0	15.9
Current tobacco user	49 (23.9)	⊢(0.35 (0.14, 0.88)	NE	10.2
Previous tobacco user	132 (64.4)	⊢	0.60 (0.36, 1.00)	23.1	13.1
Non-squamous histology	155 (75.6)	⊢ I	0.62 (0.40, 0.96)	20.2	10.5
Squamous histology	50 (24.4)		0.56 (0.23, 1.37)	NE	15.3
ECOG PS 0	73 (35.6)	⊢ −−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	0.42 (0.20, 0.92)	NE	15.7
ECOG PS 1	132 (64.4)	⊢	0.69 (0.43, 1.10)	16.5	13.1
All TC3 or IC3 WT patients	205 (100)		0.59 (0.40, 0.89) [°]	20.2	13.1
		0.1 1.0 7.0 Hazard Ratio	D		
1 patient in the \geq 85 years subgroup is not	included;	Favours Arm A (atezo) Favours Arm B (che	mo)		


^a The 1 patient in the ≥ 85 years subgroup is not included;
 1 patient's race was unknown. ^b Unstratified. ^c Stratified.
 Data cutoff: 10 September 2018.

.

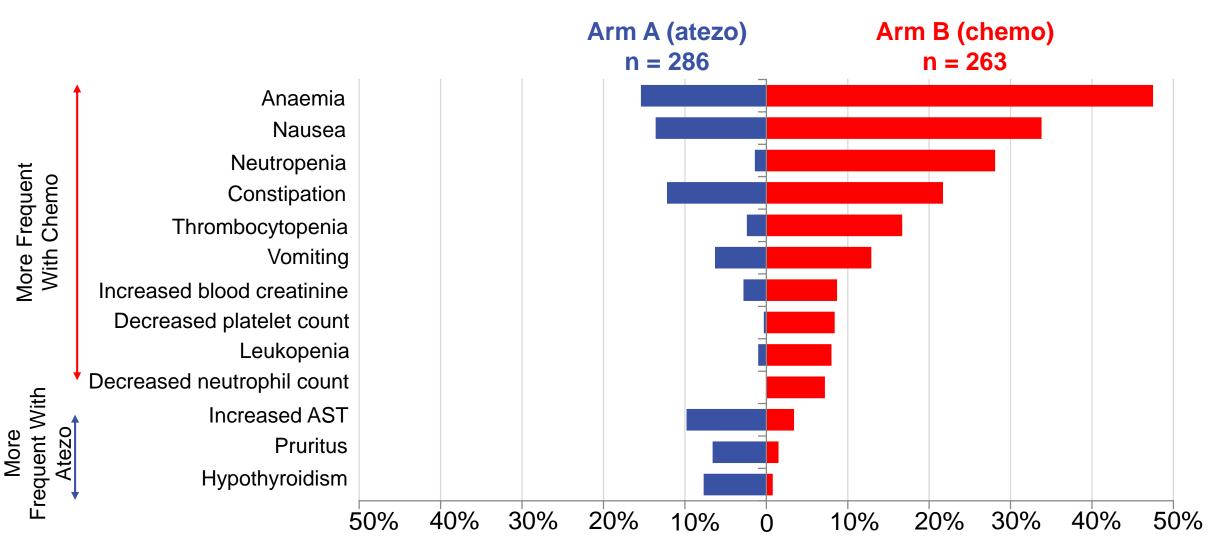
.....

OS: TC2/3 or IC2/3 WT



^a Stratified. ^b Stratified log-rank. ^c Not crossing the pre-specified alpha boundary. Data cutoff: 10 September 2018.

OS: TC1/2/3 or IC1/2/3 WT



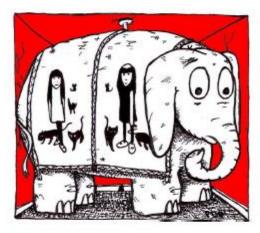
^a Stratified. ^b Stratified log-rank. ^c For descriptive purposes only. Data cutoff: 10 September 2018.

Spigel et al. IMpower110 Interim OS Analysis https://bit.ly/2lxRNHQ

ALL-CAUSE AES > 5% difference between arms

Conclusions

- Atezolizumab monotherapy showed statistically significant and clinically meaningful OS improvement in the TC3 or IC3 WT population vs platinum-based chemotherapy (HR, 0.59 [95% CI: 0.40, 0.89]; P = 0.0106)
- The OS testing boundary was not crossed in the TC2/3 or IC2/3 WT population. Therefore, the TC1/2/3 or IC1/2/3 WT population was not formally tested
 - IMpower110 will continue to the OS final analysis
- In the TC3 or IC3 WT population, atezolizumab showed meaningful improvement in PFS, ORR and DOR vs chemotherapy
- The safety profile of atezolizumab was consistent with prior observations; no new or unexpected safety signals were identified
- Additional biomarker analyses will be presented at a future congress
 - PD-L1 IHC by SP263 and 22C3, and bTMB
- Atezolizumab represents a promising 1L treatment option in patients with PD-L1—high NSCLC



Conclusions (authors and discussant Dr. Naiyer Rizvi)

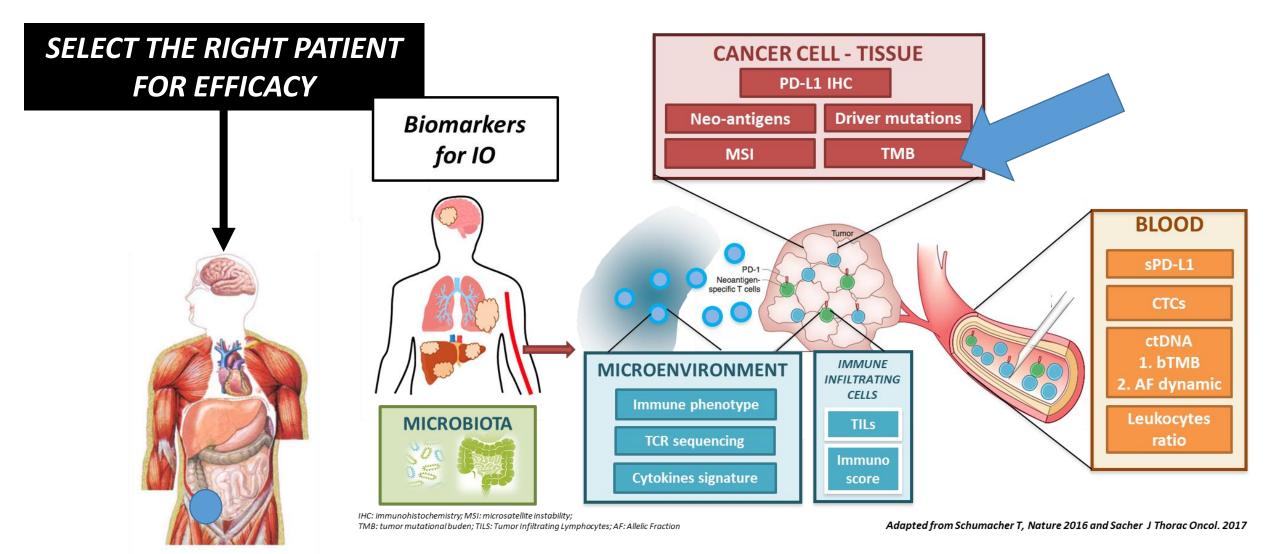
- The safety profile of atezolizumab was consistent with prior observations; no new or unexpected safety signals were identified
- Atezolizumab represents a promising 1L treatment option in patients with PD-L1– high NSCLC
- Outcomes with other PD-L1 diagnostic antibodies than SP142; 22C3 IHC? TC3 vs. IC3 ? TC2/IC2?

Tumor Mutational Burden (TMB)

The elephant in the room

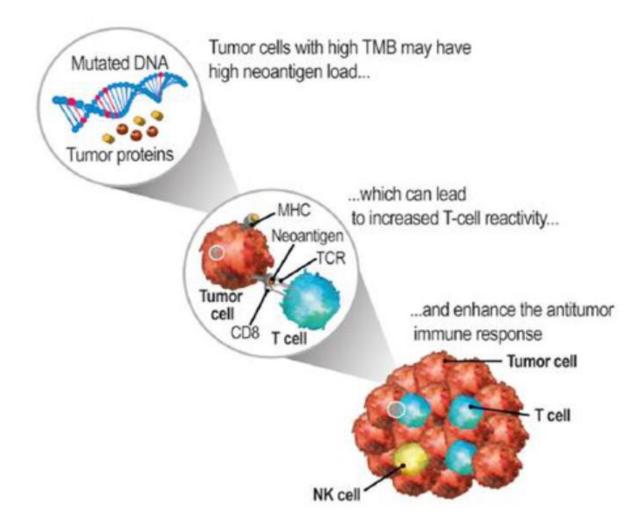
Dead

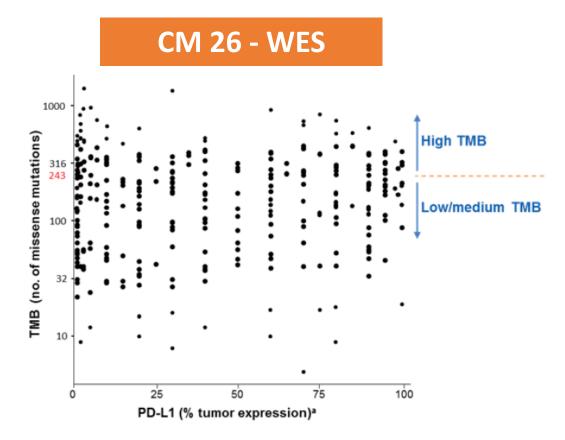
or

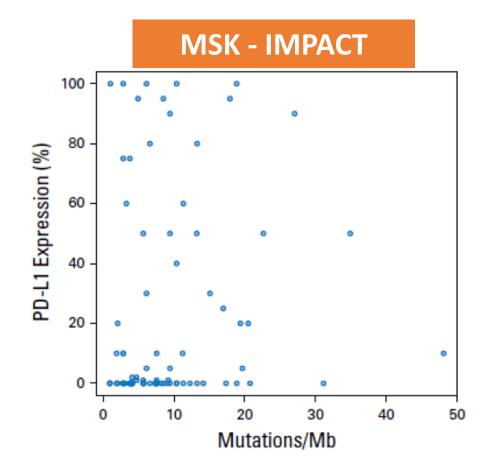


Will it get you to the right place?

Transports Metropolitans de Barcelona


Immunotherapy - who to give?


Courtesy of A.Marabelle, adapted


Ferrara R, et al. WCLC 2017. Saâda-Bouzid E, et al. Ann Oncol. 2017;28(7):1605-1611; Champiat S, et al. Clin Cancer Res. 2017;23(8):1920-1928.

TMB and relevance in immunotherapy treatment

TMB is independent of PD-L1 expression level

Association Between Tissue TMB and Clinical Outcomes with Pembrolizumab Monotherapy in PD-L1-Positive Advanced NSCLC in the KEYNOTE-010 and 042 Trials

Roy S. Herbst¹, Gilberto Lopes², Dariusz M. Kowalski³, Makoto Nishio⁴; Yi-long Wu⁵, Gilberto de Castro Jr⁶, Paul Baas⁷, Dong-Wan Kim⁸, Matthew A. Gubens⁹, Razvan Cristescu¹⁰, Deepti Aurora-Garg¹⁰, Andrew Albright¹⁰, Mark Ayers¹⁰, Andrey Loboda¹⁰, Jared Lunceford¹⁰, Julie Kobie¹⁰, Gregory Lubiniecki¹⁰, M. Catherine Pietanza¹⁰, Bilal Piperdi¹⁰, Tony SK Mok¹¹

¹Yale University School of Medicine, Yale Cancer Center, New Haven, CT, USA; ²Sylvester Comprehensive Cancer Center at the University of Miami, Miami, FL, USA; ³The Maria Sklodowska Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland; ⁴Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ⁵Guandong Lung Cancer Institute, Guangdong General Hospital, and Guangdong Academy of Medical Sciences, Guangdong, China; ⁶Instituto do Cancer do Estado de Sao Paulo, Sao Paulo, Brazil; ⁷Netherlands Cancer Institute, Amsterdam, Netherlands; ⁸Seoul National, University Hospital, Seoul, Republic of Korea; ⁹University of California, San Francisco, CA, USA; ¹⁰Merck &Co., Inc, Kenilworth, NJ, USA; ¹¹State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong, China

Background

 Pembrolizumab improved OS vs chemotherapy in patients with previously treated (KEYNOTE-010) and treatment-naive (KEYNOTE-042) PD-L1+ (TPS ≥1%), advanced NSCLC^{1, 2}

Methods: Clinical Utility of TMB

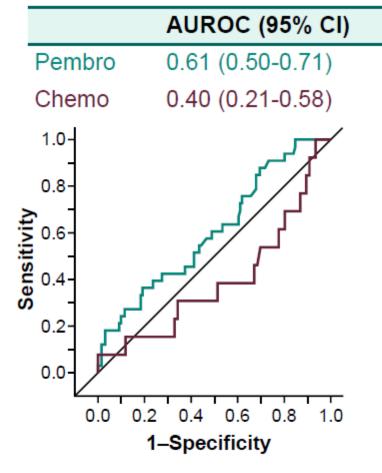
Rationale for WES TMB cutpoint

- Exploratory TMB cutpoint was identified as a biologically optimal threshold across multiple tumor types in pembrolizumab studies using WES platform^{1,2}
- WES platform:
 - Comprehensive, gold standard method of sequencing cancer genetics including somatic alterations³
 - Benchmark method in ongoing TMB assessment harmonization efforts^{3,4}
 - · Consistent analytical pipeline across the pembrolizumab translational program

Clinical Utility of tTMB

- Assessed using prespecified exploratory cutpoint of 175 mut/exome
 - Derived using GEP and WES TMB data from multiple tumor cohorts across the pembrolizumab clinical program^{1,2,5}
 - Yields most statistically significant difference in distribution of an 18-gene GEP in a mixed-tumor dataset^{1,2,5}
 - Most closely approximates 13 mut/Mb by FoundationOne CDx (legacy F1CDx, Foundation Medicine proprietary pipeline QSR_F1Dx_v1.03) and 10 mut/Mb (updated pipeline F1Dx_v3.2)

1. Cristescu R et al. Science 2018;362:pii:eaar3593. 2. Panda A et al. JCO Precis Oncol 2017;doi:10.1200/PO.17.00146. 3. Stenzinger A et al. Genes Chromosomes Cancer 2019; 58:578-588. 4. Fabrizio D et al, J Immunotherapy Cancer 2018;6:434. 5. Ayers M et al. J Clin Invest 2017;127:2930-40.


Association of tTMB (log₁₀) With Efficacy (KEYNOTE-010^a)

Nominal <i>P</i> Value [⊳]	Pembro (n = 164)	Chemo (n = 89)
OS	0.006 (one-sided)	0.410 (two-sided)
PFS	0.001 (one-sided)	0.579 (two-sided)
ORR	0.009 (one-sided)	0.330 (two-sided)

tTMB was associated with outcomes for pembro as a continuous variable but not with chemo based on α = 0.05 significance level and AUROC analysis

^aAll patients were PD-E1-positive (TPS >1%). ^bWald test. P values are one-sided for pembro as the a priori hypothesis was that tTMB was positively associated with improved outcomes of pembro. *P* values are two-sided for placebo because there was no a priori hypothesis regarding the direction of the association between tTMB and outcomes of chemo. TMB was assessed as a continuous, log₁₀-transformed variable. Data cutoff date: Mar 16, 2018.

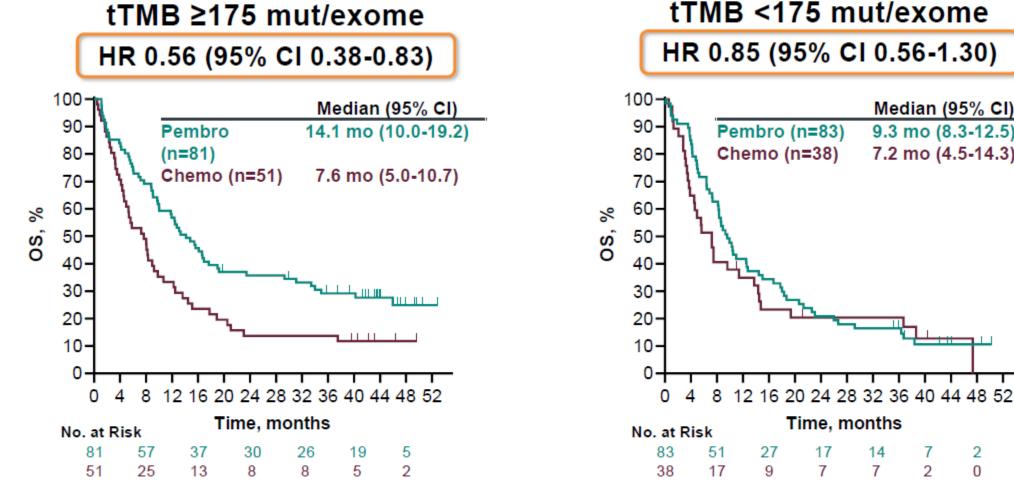
ROC Curves of ORR for tTMB

Clinical Utility for OS (KEYNOTE-010^a): tTMB Cutpoint of 175 mut/exome

Median (95% CI)

9.3 mo (8.3-12.5)

7.2 mo (4.5-14.3)


2

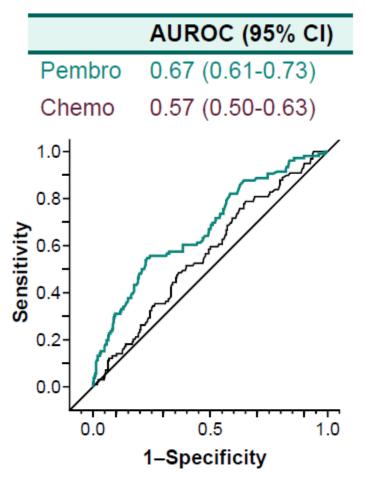
0

7

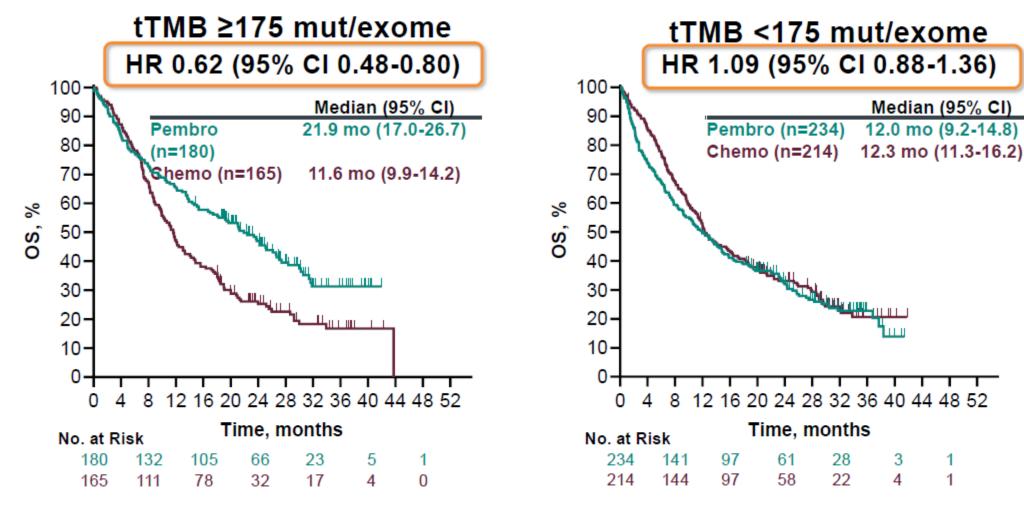
7

2

^aAll patients were PD-L1-positive (TPS ≥1%). Data cutoff date: Mar 16, 2018.


Association of tTMB (log₁₀) With Efficacy (KEYNOTE-042^a)

Nomina I <i>P</i> Value ^ь	Pembro (n = 414)	Chemo (n = 379)
os	<0.001 (one- sided)	0.060 (two- sided) ^c
PFS	<0.001 (one- sided)	0.174 (two- sided) ^c
ORR	<0.001 (one- sided)	0.035 (two- sided)


tTMB was associated with outcomes for pembro as a continuous variable but not chemo in general, based on α = 0.05 significance level and AUROC

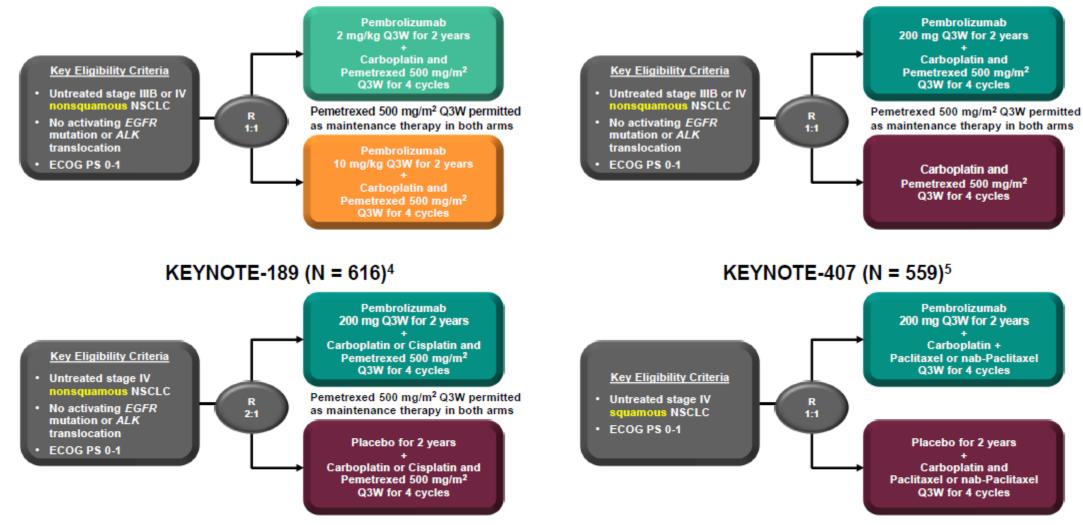
^aAll patients were PD-L1-positive (TPS ≥1%). ^bWald test. *P* values are one-sided for pembro as the a priori hypothesis was that tTMB was positively associated with improved outcomes of pembro. *P* values are two-sided for placebo as there was no a priori hypothesis regarding the direction of association between tTMB and outcomes of chemo. TMB was assessed as a continuous, log₁₀-transformed variable. ^ctTMB showed negative directions of association with OS and PFS in the chemo arm. Data cutoff date: Sep 4, 2018.

ROC Curves of ORR for tTMB

Clinical Utility for OS (KEYNOTE-042^a): tTMB Cutpoint of 175 mut/exome

^aAll patients were PD-L1-positive (TPS ≥1%). Data cutoff date: Sep 4, 2018.

LBA80


Pembrolizumab Plus Platinum-Based Chemotherapy for Metastatic NSCLC: Tissue TMB (tTMB) and Outcomes in KEYNOTE-021, 189, and 407

Luis Paz-Ares,¹ Corey J. Langer,² Silvia Novello,³ Balazs Halmos,⁴ Ying Cheng,⁵ Shirish M. Gadgeel,⁶ Rina Hui,⁷ Shunichi Sugawara,⁸ Hossein Borghaei,⁹ Razvan Cristescu,¹⁰ Deepti Aurora-Garg,¹⁰ Andrew Albright,¹⁰ Andrey Loboda,¹⁰ Julie Kobie,¹⁰ Jared Lunceford,¹⁰ Mark Ayers,¹⁰ Gregory M. Lubiniecki,¹⁰ M. Catherine Pietanza,¹⁰ Bilal Piperdi,¹⁰ Marina C. Garassino¹¹

 ¹Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Universidad Complutense and Ciberonc, Madrid, Spain; ²Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA; ³University of Turin, Orbassano, Italy;
 ⁴Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA; ⁵Jilin Cancer Hospital, Changchun, China;
 ⁶Karmanos Cancer Institute, Detroit, MI, USA (currently at University of Michigan, Ann Arbor, MI, USA); ⁷Westmead Hospital and University of Sydney, Sydney, NSW, Australia; ⁸Sendai Kousei Hospital, Miyagi, Japan; ⁹Fox Chase Cancer Center, Philadelphia, PA, USA; ¹⁰Merck & Co., Inc., Kenilworth, NJ, USA; ¹¹Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

Study Designs

KEYNOTE-021 Cohort C (N = 24)¹

KEYNOTE-021 Cohort G (N = 123)^{2,3}

1. Lung Cancer 2018;125:273-81. 2. Lancet Oncol 2016;17:1497-508. 3. J Thorac Oncol 2019;14:124-9. 4. N Engl J Med 2018;378:2078-92. 5. N Engl J Med 2018;379:2040-51.

Association of tTMB (log₁₀) With Efficacy

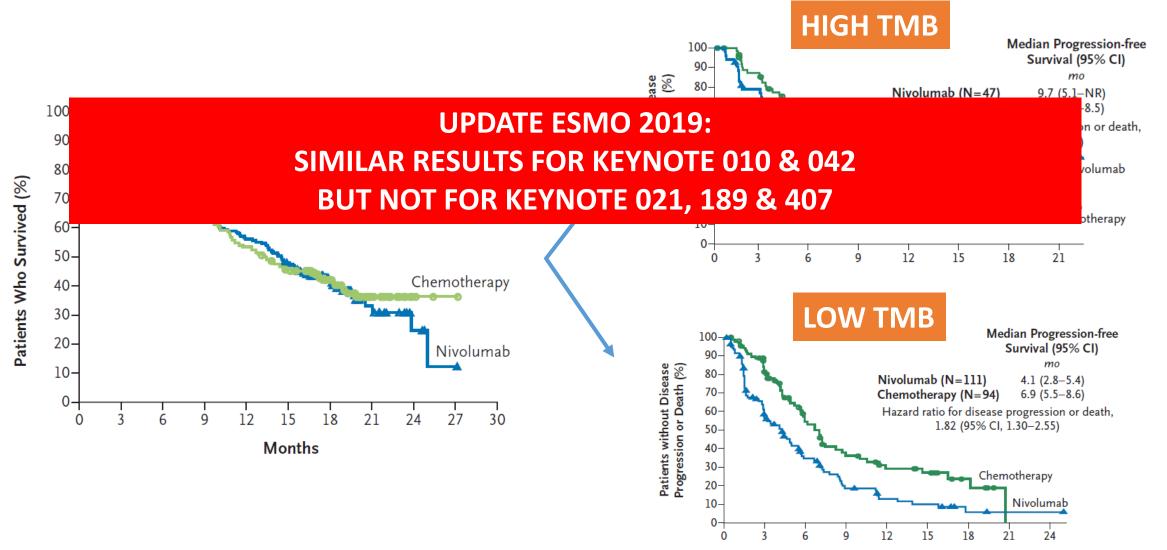
	KEYNOTE-021 C and G		KEYNC)TE-189	KEYNOTE-407	
Nominal P Valueª	Pembro + Chemo (n = 44)	Chemo Alone (n = 26)	Pembro + Chemo (n = 207)	Placebo + Chemo (n = 86)	Pembro + Chemo (n = 143)	Placebo + Chemo (n = 169)
ORR	0.180	0.279	0.072	0.434	0.393	0.086
PFS	0.187	0.409	0.075	0.055	0.052	0.560
OS	0.081	0.475	0.174	0.856	0.160	0.818

No association between tTMB (continuous, log₁₀-transformed) and efficacy for pembrolizumab + chemotherapy or chemotherapy ± placebo in any study based on α = 0.05 significance level

^aP were values calculated using the Wald test and are one-sided for pembro + chemo (a priori hypothesis that tTMB was positively associated with improved outcomes for pembro + chemo) and two-sided for chemo alone and placebo + chemo (no a priori hypothesis regarding direction of the association between tTMB and outcomes). Data cutoff dates: Dec 1, 2017 (KEYNOTE-021); Sep 21, 2018 (KEYNOTE-189); May 9, 2019 (KEYNOTE-407).

Conclusions

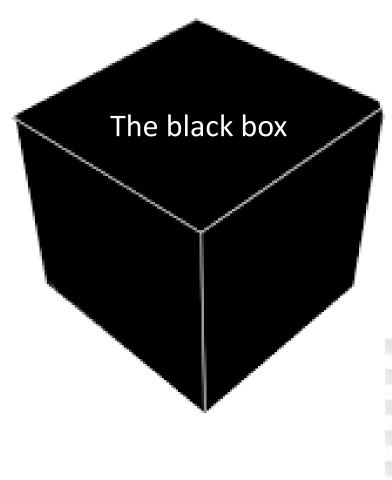
- Higher tTMB levels as assessed by WES were associated with improved clinical outcomes for pembrolizumab monotherapy in patients with PD-L1-positive advanced NSCLC
- PD-L1 1-49% and TMB high may be appropriate for pembrolizumab monotherapy
- **Pembrolizumab/chemotherapy** combinations active in **both TMB high and low** tumors
- Limitations:
- Exploratory analysis
- Analysis in subsets of patients with available tTMB in these trials
- TMB high and PD-L1 <1% ?
- Different methods and definitions of TMB testing harmonization needed


Next-generation sequencing and assessment of tumour mutational burden: are these tools ready for clinical routine use?

INTERNATIONAL CONGRESS 2019

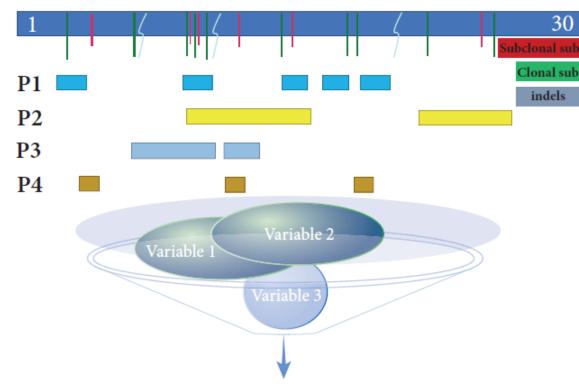
MADRID Spain, 28 September – 2 October

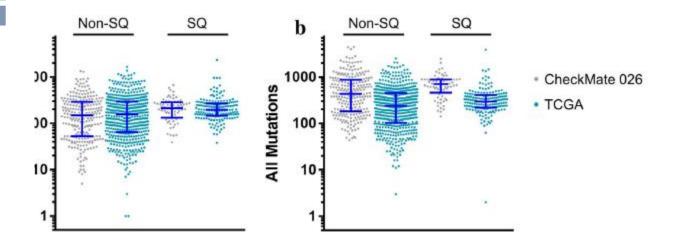
L. Hendriks, pulmonologist, MD, PhD Maastricht UMC+, The Netherlands


Impact of TMB on anti-PD-1

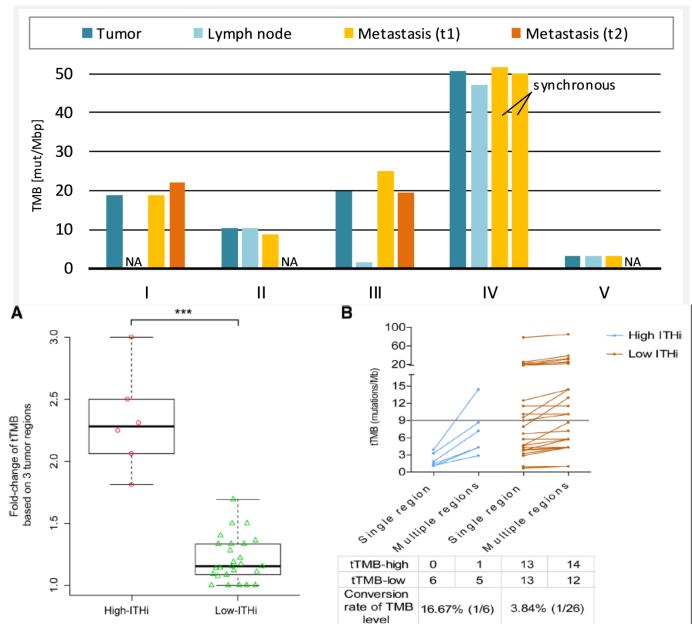
TMB definition

Number of mutations in genome.....



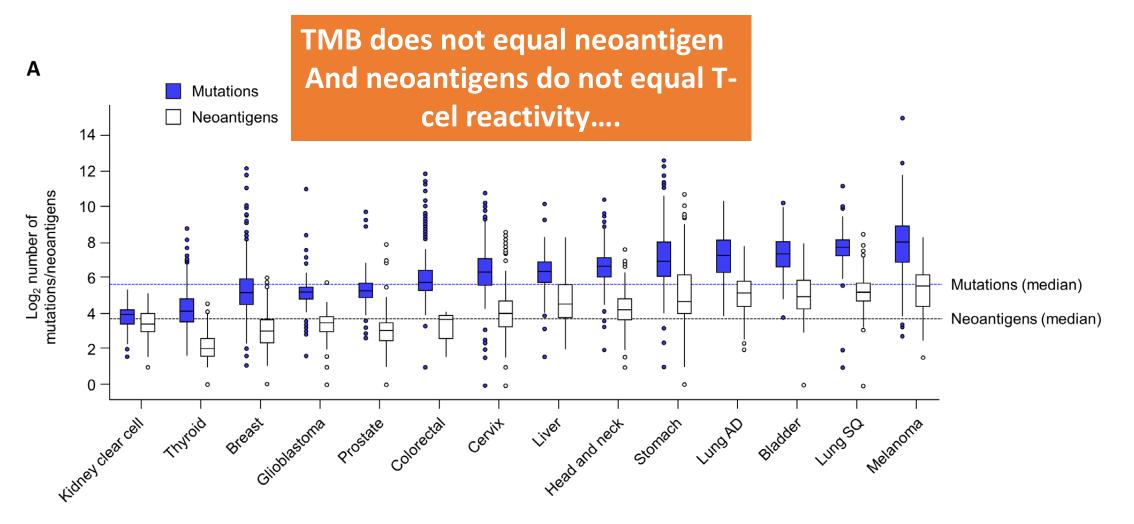

TMB pitfalls

Genes covered


Exome (coding region - approx. 1-2% of genome)-1MB = 1 million nucleotides Variability regarding definition

Missense vs "all" mutations

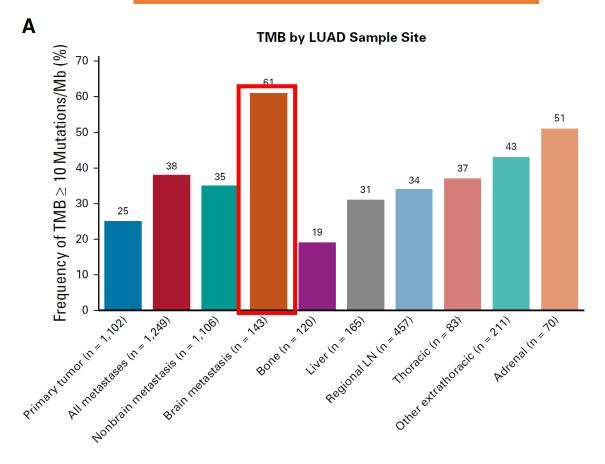
TMB pitfalls

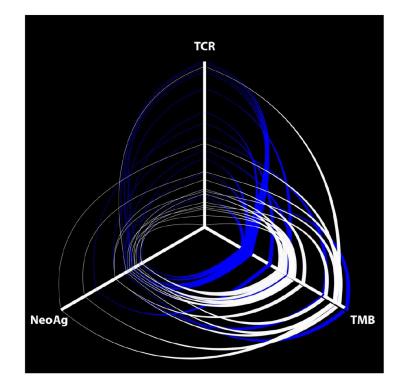


Heterogeneity primary – LN metastasis

Intratumor heterogeneity 30%, up to 14 mut/Mb difference!

TMB pitfalls




TMB pitfalls tumor microenvironment matters

White = BM; Blue = lung

Brain mets often high TMB

But less T-cell clonality in brain mets

Stein JCO precision oncology 2019 * Mansfield Sci Rep 2018

TMB summary

✓ Why?

- Biological rationale
- ✓ High TMB associated with long term outcome across tumor types

✓ Pitfalls - drawbacks

- ✓ Heterogeneity++
- ✓ Be aware of type of test (definition, coverage, genes sequenced, race)
- ✓ TAT 2 weeks for tissue, < 1 week for blood

✓ Implement?

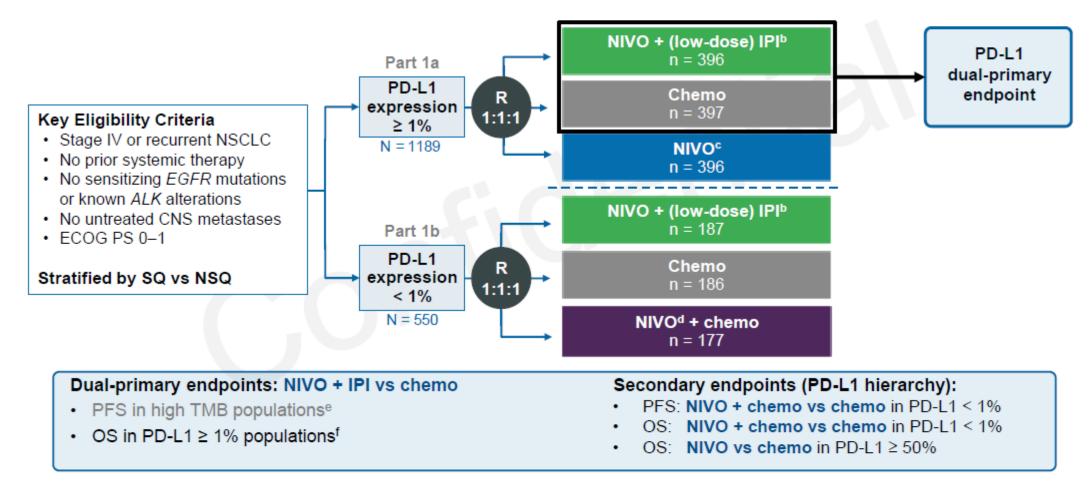
✓ Interesting but not ready for clinical use yet

KEEP CALM EQUIPMENT NOT READY FOR USE, YET

IO-IO combinations: more is better?

DRAFT

LBA4

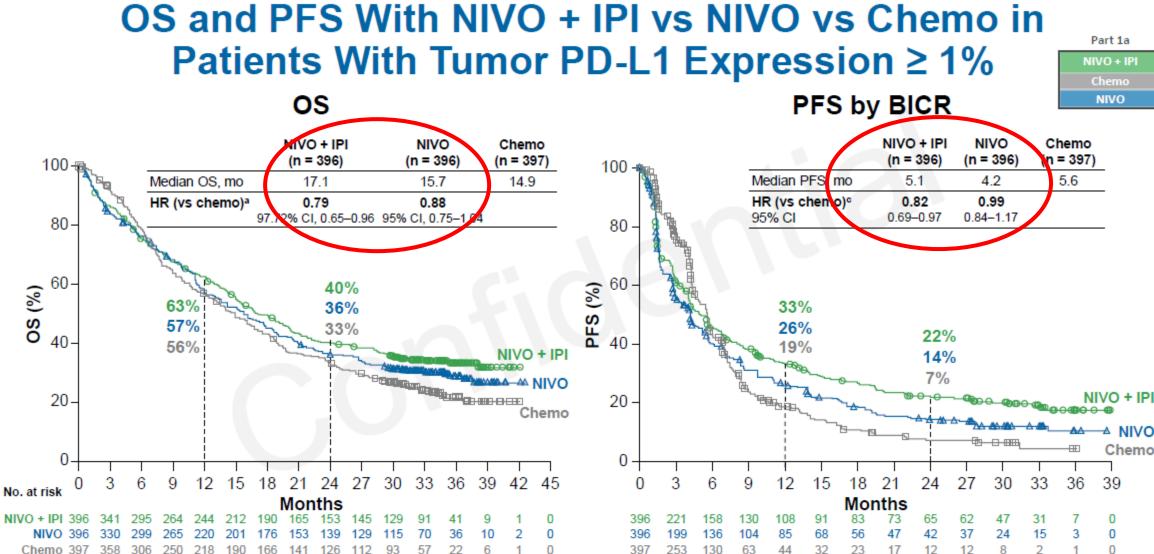

Nivolumab + Low-Dose Ipilimumab Versus Platinum-Doublet Chemotherapy as First-Line Treatment for Advanced Non-Small Cell Lung Cancer: CheckMate 227 Part 1 Final Analysis

Solange Peters,¹ Suresh Ramalingam,² Luis Paz-Ares,³ Reyes Bernabe Caro,⁴ Bogdan Zurawski,⁵ Sang-We Kim,⁶ Aurelia Alexandru,⁷ Lorena Lupinacci,⁸ Emmanuel de la Mora Jimenez,⁹ Hiroshi Sakai,¹⁰ István Albert,¹¹ Alain Vergnenegre,¹² Martin Reck,¹³ Hossein Borghaei,¹⁴ Julie R. Brahmer,¹⁵ Kenneth O'Byrne,¹⁶ William J. Geese,¹⁷ Prabhu Bhagavatheeswaran,¹⁷ Faith E. Nathan,¹⁷ Matthew D. Hellmann¹⁸

¹Centre hospitalier universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland; ²Winship Cancer Institute, Emory University, Atlanta, GA, USA; ³Hospital Universitario Doce de Octubre, CNIO, Universidad Complutense & CiberOnc, Madrid, Spain; ⁴Hospital Universitario Virgen Del Rocio, Seville, Spain; ⁵Ambulatorium Chemioterapii, Bydgoszcz, Poland; ⁶Asan Medical Center, Seoul, Republic of Korea; ⁷Institute Of Oncology "Prof. Dr. Alexandru Trestioreanu" Bucha, Bucharest, Romania; ⁸Hospital Italiano De Buenos Aires, Buenos Aires, Argentina; ⁹Instituto Jalisciense De Cancerología, Guadalajara, Jalisco, Mexico; ¹⁰Saitama Cancer Center, Saitama, Japan; ¹¹Matrai Gyogyintezet, Matrahaza, Hungary; ¹²Limoges University Hospital, Limoges, France; ¹³Lung Clinic Grosshansdorf, German Center for Lung Research, Grosshansdorf, Germany; ¹⁴Fox Chase Cancer Center, Philadelphia, PA, USA; ¹⁵Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA; ¹⁶Princess Alexandra Hospital, Brisbane, Queensland, Australia;

Abstract Number LBA4

CheckMate 227 Part 1 Study Design^a



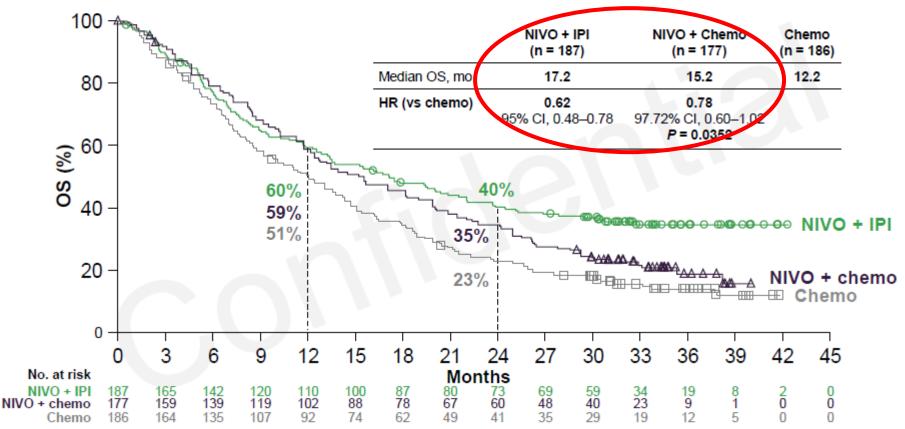
Database lock: July 2, 2019; minimum follow-up for primary endpoint: 29.3 months

Study treatments continued until disease progression, unacceptable toxicity, or for 2 years for immunotherapy.

^aNCT02477826; ^bNIVO (3 mg/kg Q2W) plus IPI (1 mg/kg Q6W); ^cNIVO (240 mg Q2W); ^dNIVO (360 mg Q3W); ^eTMB dual-primary endpoint analysis conducted at January 24, 2018 database lock in subset of patients randomized to NIVO + IPI or chemo; alpha allocated was 0.025; ^fAlpha allocated was 0.025 overall (0.023 for final analysis)

CheckMate 227 Part 1: NIVO + IPI in 1L NSCLC

Dosages were NIVO (3 mg/kg Q2W) plus IPI (1 mg/kg Q6W), and NIVO (240 mg Q2W). Subsequent systemic therapy was received by 35% of patients in the NIVO + IPI arm, 44% in the NIVO arm, and 54% of patients in the chemo arm; subsequent immunotherapy was received by 6%, 8%, and 43%, respectively. ^aHR (95% CI) for NIVO + IPI vs NIVO, 0.90 (0.76–1.07); ^bHR (95% CI) for NIVO + IPI vs NIVO, 0.83 (0.71–0.97).


DRAFT

Part 1b

NIVO + IPI

NIVO + chemo

OS With NIVO + IPI and NIVO + Chemo vs Chemo in Patients With Tumor PD-L1 Expression < 1%

- PFS for NIVO + chemo vs chemo (secondary endpoint) in PD-L1 < 1% was met (HR, 0.73; P = 0.0070)
- OS for NIVO + chemo vs chemo was not met; subsequent secondary endpoints in the hierarchy are descriptive

Dosages were NIVO (3 mg/kg Q2W) plus IPI (1 mg/kg Q6W), and NIVO (360 mg Q3W) plus chemo. Subsequent systemic therapy was received by 44% of patients in the NIVO + IPI arm, 41% in the NIVO + chemo arm, and 53% of patients in the chemo arm; subsequent immunotherapy was received by 4%, 4%, and 36%, respectively. Among patients with PD-L1 <1%, patients were randomized 1:1:1 across treatment arms.

DRAFT

OS for NIVO + IPI vs Chemo By Tumor PD-L1 Expression, TMB Status, and Combined Subgroups in All Randomized Patients

		Median OS, months				
		NIVO + IPI n = 583	Chemo n = 583	HR	HR (95% CI)	
Randomize	d groups			Stratified	Stratified	
	All randomized (N = 1166)	17.1	13.9	0.73	_ →	
PD-L1	PD-L1 < 1% (n = 373)	17.2	12.2	0.62		
	PD-L1 ≥ 1% (n = 793)	17.1	14.9	0.79ª		
Additional e	exploratory subgroups analyses not	controlled by randomiz	zation	Unstratified	Unstratified	
PD-L1	1–49% (n = 396)	15.1	15.1	0.94	_	
	≥ 50% (n = 397)	21.2	14.0	0.70		
TMB [♭] (mut/Mb)	low, < 10 (n = 380)	16.2	12.6	0.75		
	high, ≥ 10 (n = 299)	23.0	16.4	0.68		
				0.25	0.5 1	

(modified from Peters ESMO 2019)

DRAFT

Safety Summary of Treatment-Related AEs in All Randomized Patients Treated with NIVO + IPI, NIVO, or Chemo

	NIVO + IPI (n = 576)		NIVO ^b (n = 391)		Chemo (n = 570)	
TRAE, ^a %	Any grade	Grade 3–4	Any grade	Grade 3–4	Any grade	Grade 3–4
Any TRAE	77	33	66	19	82	36
TRAE leading to discontinuation ^c	18	12	12	7	9	5
Most frequent TRAEs (≥ 15%)						
Diarrhea	17	2	12	< 1	10	1
Rash	17	2	11	1	5	0
Fatigue	14	2	11	< 1	19	1
Decreased appetite	13	1	7	0	20	1
Nausea	10	< 1	6	< 1	36	2
Anemia	4	1	3	< 1	33	12
Constipation	4	0	2	0	15	< 1
Neutropenia	< 1	0	< 1	0	17	10
Treatment-related deaths ^d		1	<	1		1
With 18 months more follow-up, safety was consister Median duration of therapy (range) was 4.2 mo (0.03			Event KN-189		Pembrolizumab Combination (N=405)	
2.6 mo (0.03–37.6+) with chemo Grade Grade						Grade 3, 4, or
		0200				numbe
ges were NIVO (3 mg/kg Q2W) plus IPI (1 mg/kg Q6W), and NIVO (240 mg Q2W). des events reported between first dose and 30 days after last dose of study drug; ^b Study tre IIVO occurred in 3% of patients; ^d Treatment-related deaths in the NIVO + IPI arm were pne VO arm were pneumonitis, and critical neutropenia and sepsis; deaths in the chemo arm w			event		404 (99.8)	272 (67.2)
VIVO occurred in 3% of patients; "Treatment-related d VO arm were pneumonitis, and critical neutropenia ar se, and thrombocytopenia. Imann MD et al. <i>N Engl J Med</i> 2018;378:2093–2104.	eaths in the NIVO + IF nd sepsis; deaths in th	e chemo arm w Even	t leading to disconti all treatment†	inuation of	56 (13.8)	48 (11.9)

Conclusions Authors

- CheckMate 227 is the first phase 3 randomized trial to show NIVO + IPI vs chemo is effective in NSCLC
- NIVO + IPI represents a first-line treatment option for patients with NSCLC with the potential to provide a long-term OS benefit, and preserve chemo treatment options in the second-line setting

However (Discussant Dr Sanjay Popat):

- In PDL1+ OS benefit driven by ≥50% group, beware the trAEs & discontinuation rate for similar OS benefit with IO mono & less toxicity.
- A potential role in PDL1-negatives, but not seemingly better than chemo-pembro and with notable toxicities.
- Is nivo-ipi the preferred clinical option? This depends on other treatment options and balance of efficacy and safety (patient individualization).
- **Comment** (also pointed out by Dr. Popat): will nivo-ipi improve the "tail" of the OS curve due to an ipi effect maintaining long term survivors?

OUDEREN?

PBSO
NEWS
HOURDoctors want to give
their cancer patients
every chance. But are
they pushing off hard
talks too long?

The Problem With Miracle Cancer Cures

By Robert M. Wachter

TREATING CANCER: HOPE VS. HYPE

Widespread Hype Gives False Hope To Many Cancer Patients

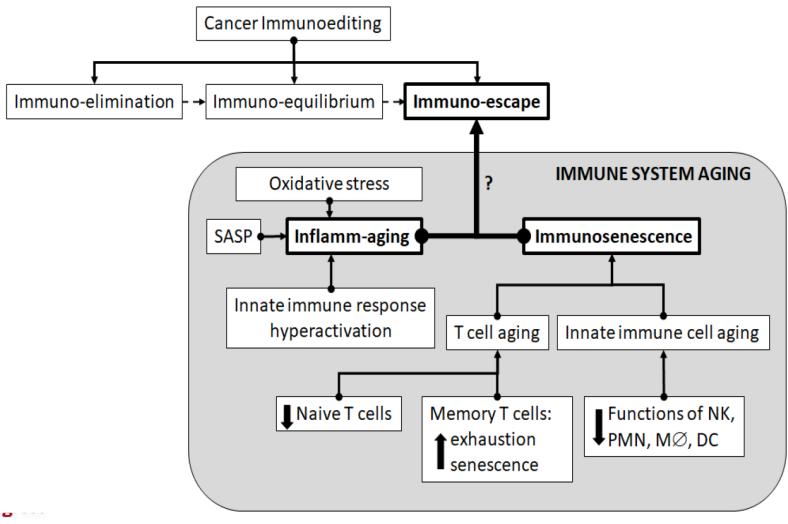
The ASCO Post

The Challenge of Prognostication in the Era of Immunotherapy EDITORIAL | VOLUME 19, ISSUE 7, P845, JULY 01, 2018

Immunotherapy: hype and hope

The Lancet Oncology

Published: July, 2018 • DOI: https://doi.org/10.1016/S1470-2045(18)30317-6 •



#ASCO19 Slides are the property of the author permission required for reuse. PRESENTED BY: Rawad Elias HealthCare

Presented By Rawad Elias at 2019 ASCO Annual Meeting

Verouderd immuunsysteem en kanker ontwikkeling

Slide witkowski esmo 2019 - basics in immunotherapy Springer 2019

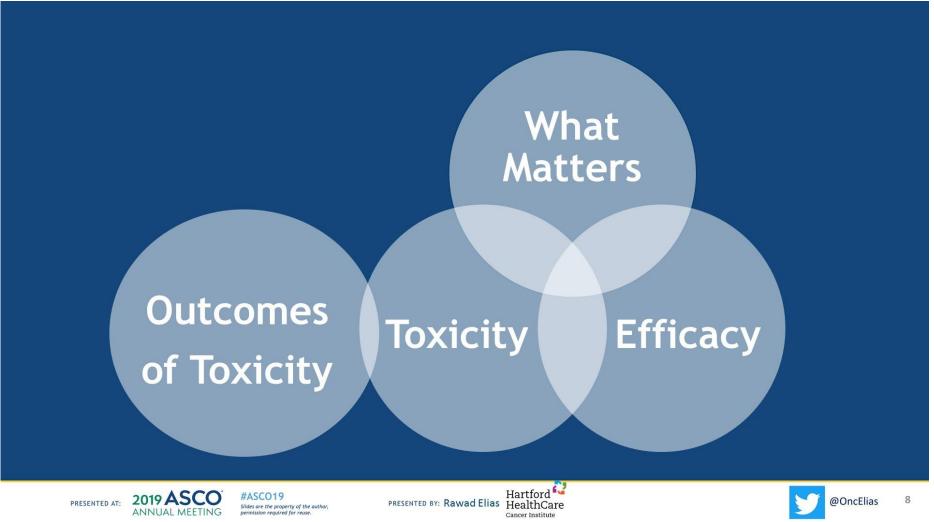
Zijn er data bij oudere NSCLC patiënten en immunotherapie?

Safety and Efficacy of Pembrolizumab Monotherapy in Elderly Patients With PD-L1 Positive Advanced NSCLC: Pooled Analysis From KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042

<u>Kaname Nosaki</u>¹; Yukio Hosomi²; Hideo Saka³; Paul Baas⁴; Giberto de Castro Jr⁵; Martin Reck⁶; Yi-Long Wu⁷; Julie R. Brahmer⁸; Enriqueta Felip⁹; Takeshi Sawada¹⁰; Kazuo Noguchi¹⁰; Shi Rong Han¹⁰; Bilal Piperdi¹¹; Debra A. Kush¹¹; Gilberto Lopes¹² 264/2612 = 10% ouderen

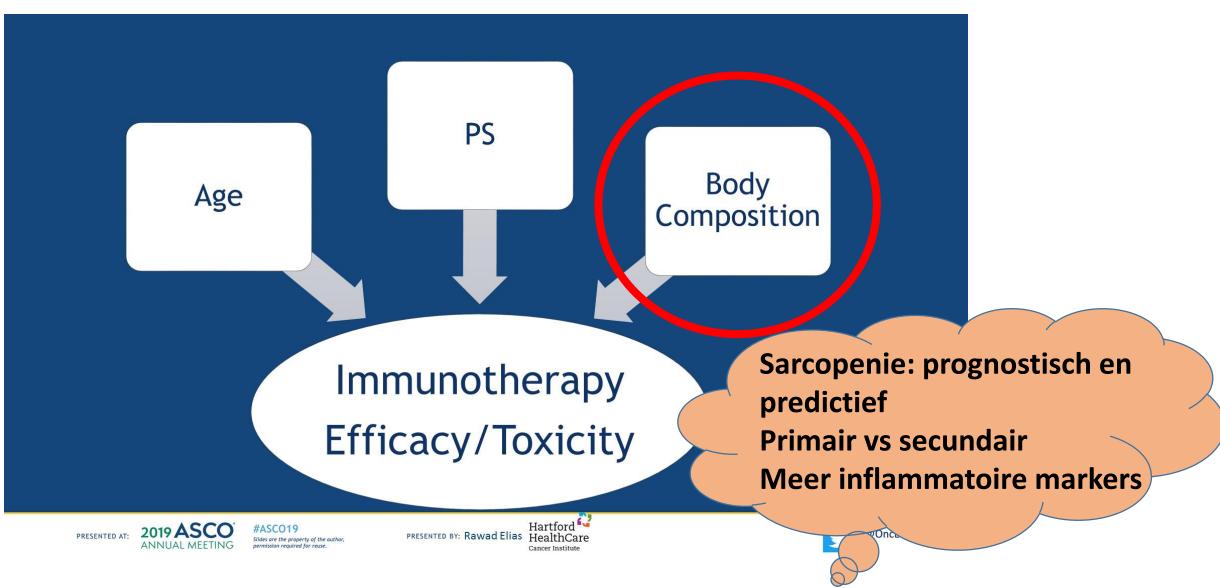
Overleving ouderen versus jongeren

Kaplan-Meier Estimate of OS PD-L1 TPS ≥1% (KN010, KN024, KN042)



Geldt voor iedere PD-L1 subgroep

Geen relevante verschillen in bijwerkingen

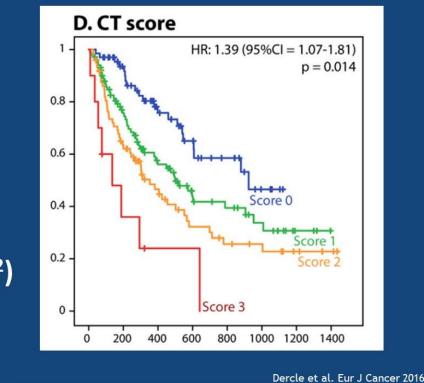

Data cutoff dates: KN010, March 24, 2017; KN024, May 9, 2016; KN042, February 26, 2018.

Waar letten we bij ouderen nu op bij immunotherapie?

Presented By Rawad Elias at 2019 ASCO Annual Meeting

Wat heeft naast leeftijd en conditie invloed?

Presented By Rawad Elias at 2019 ASCO Annual Meeting


Immunotherapy & Body Composition: Efficacy

251 Patients on Phase-1 Trials

Prognostic Score: PS3-CT

• **PS3-CT**:

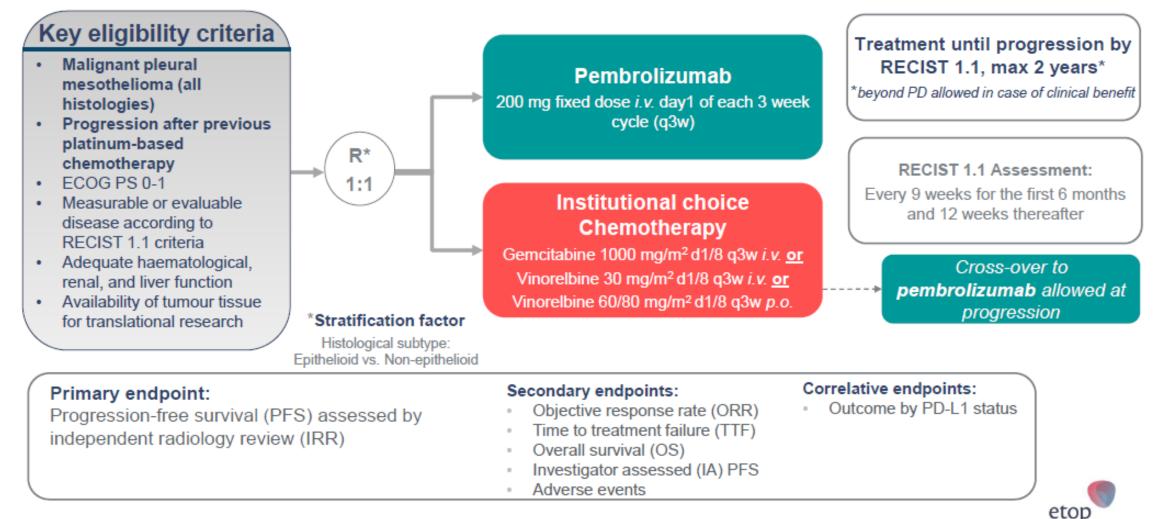
- High Tumor Burden (> 9 cm)
- Low Skeletal Muscle Index (< 53 cm² m⁻²)
- Non-Pulmonary Visceral Metastases

Ook meer toxiciteit!

#ASCO19 Slides are the property of the author, permission required for reuse. PRESENTED BY: Rawad Elias Hartford Cancer Institute

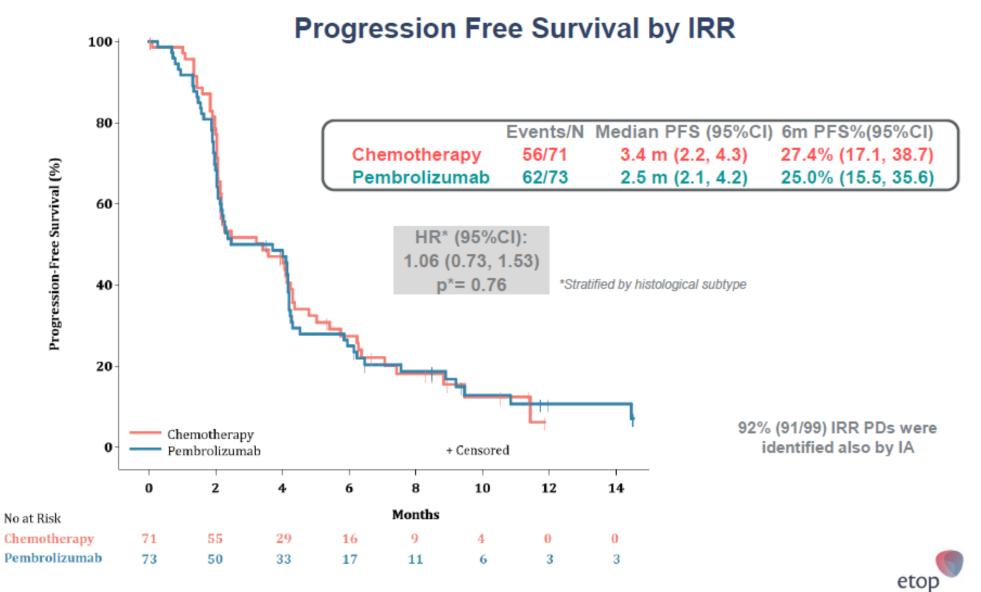
Stelling I

- Ouderen moeten in aanmerking komen voor immunotherapie voor longkanker
 - Ip JA maar...


Stelling II

- Immunotherapie is niet zo effectief bij ouderen als bij jongeren
 - Ip NEE maar..

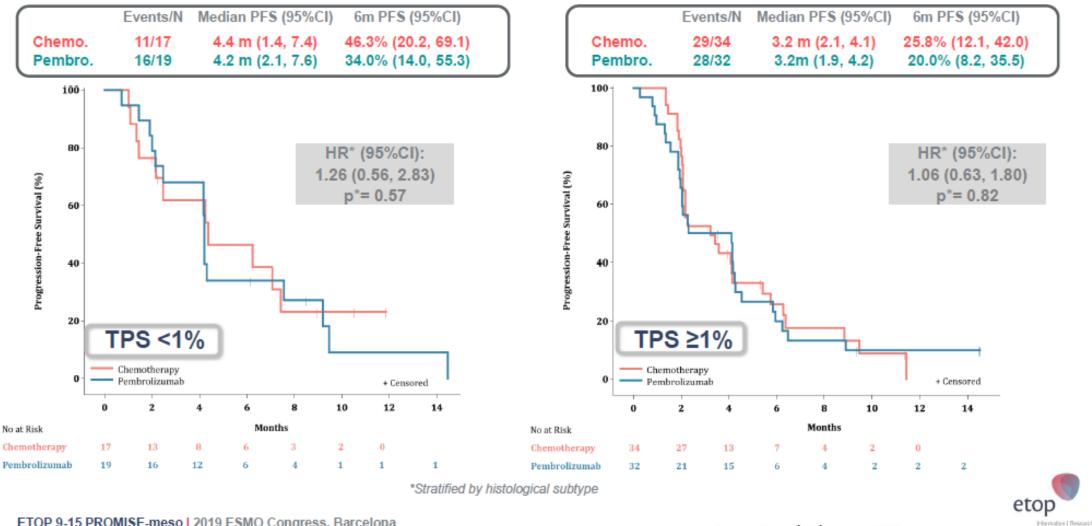
Vragen ?


MPM

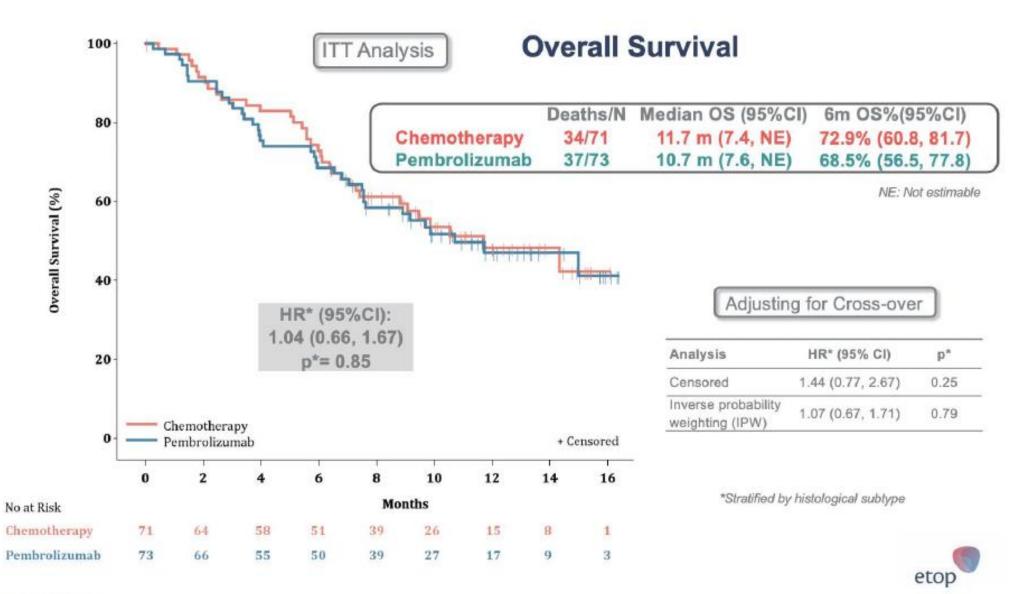
ETOP 9-15 PROMISE-meso – Study Design & Objectives

ETOP 9-15 PROMISE-meso | 2019 ESMO Congress, Barcelona

Popat S et al, Abstract 1665, Proferred Paper 30 Sep

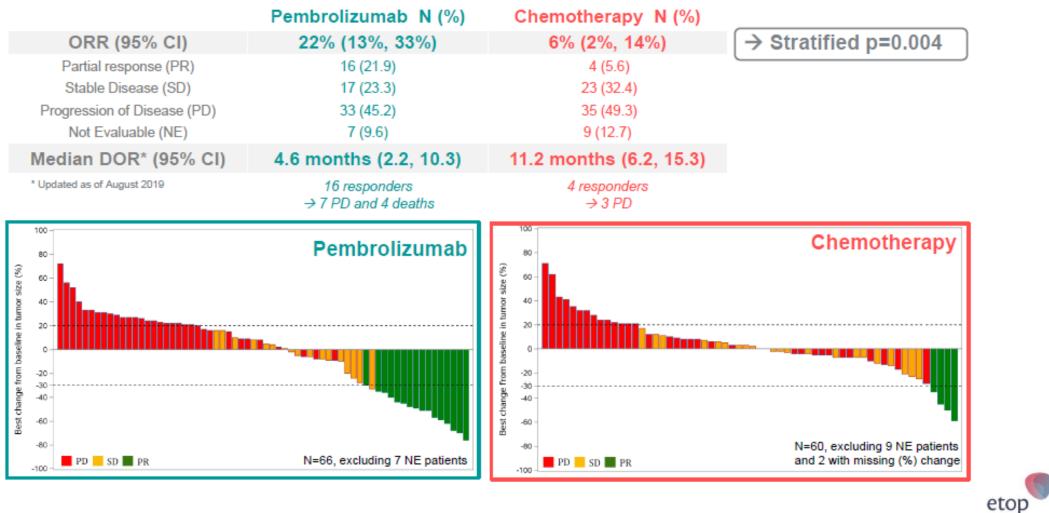


ETOP 9-15 PROMISE-meso | 2019 ESMO Congress, Barcelona


Popat S et al, Abstract 1665

Information | Research

PFS (IRR) by PD-L1 status



ETOP 9-15 PROMISE-meso | 2019 ESMO Congress, Barcelona

Popat S et al, Abstract 1665

Best Overall Response – Duration of Response (DOR) by IRR

Popat S et al, Abstract 1665

Information | Research

SCLC

*

IASLC 19th World Conference on Lung Cancer September 23–26, 2018 Toronto, Canada

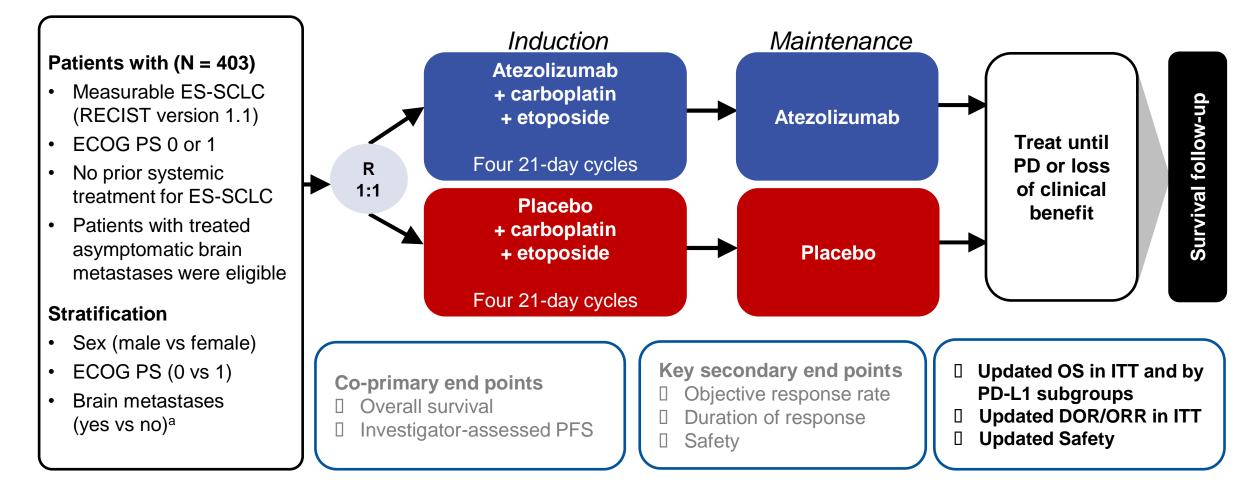
> WCLC2018.IASLC.ORG

#WCLC2018

IMpower133: Primary PFS, OS, and safety in a Ph1/3 study of 1L atezolizumab + carboplatin + etoposide in extensive-stage SCLC

S. V. Liu,¹ A. S. Mansfield,² A. Szczesna,³ L. Havel,⁴ M. Krzakowski,⁵ M. J. Hochmair,⁶ F. Huemer,⁷ G. Losonczy,⁸ M. L. Johnson,⁹ M. Nishio,¹⁰ M. Reck,¹¹ T. Mok,¹² S. Lam,¹³ D. S. Shames,¹³ J. Liu,¹⁴ B. Ding,¹³ F. Kabbinavar,¹³ W. Lin,¹³ A. Sandler,¹³ L. Horn¹⁵

¹Georgetown University, Washington DC, USA; ²Mayo Clinic, Rochester, MN, USA; ³Mazowieckie Centrum Leczenia Chorób Płuc i Gruźlicy, Otwock, Poland; ⁴Thomayerova Nemocnice, Pneumologická Klinika 1.LF UK, Prague, Czech Republic; ⁵Centrum Onkologii-Instytut im. M. Skłodowskiej-Curie w Warszawie, Warsaw, Poland; ⁶Department of Respiratory and Critical Care Medicine & Ludwig Boltzmann Institute for COPD & Respiratory Epidemiology – Baumgartner Höhe, Otto-Wagner-Spital, Vienna, Austria; ⁷2nd Department of Respiratory and Critical Care Medicine & Ludwig Boltzmann Institute for COPD & Respiratory Epidemiology – Baumgartner Höhe, Otto-Wagner-Spital, Vienna, Austria; ⁸Semmelweis Egyetem ÁOK, Pulmonológiai Klinika, Budapest, Hungary; ⁹Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN, USA; ¹⁰The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; ¹¹LungClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research, Grosshansdorf, Germany; ¹²State Key Laboratory of South China, The Chinese University of Hong Kong, Hong Kong, China; ¹³Genentech, Inc., South San Francisco, CA, USA; ¹⁴F. Hoffmann-La Roche, Ltd., Shanghai, China; ¹⁵Vanderbilt University Medical Center, Nashville, TN, USA


IMPOWER133: UPDATED OVERALL SURVIVAL (OS) ANALYSIS OF FIRST-LINE (1L) ATEZOLIZUMAB (ATEZO) + CARBOPLATIN + ETOPOSIDE IN EXTENSIVE-STAGE SCLC (ES-SCLC)

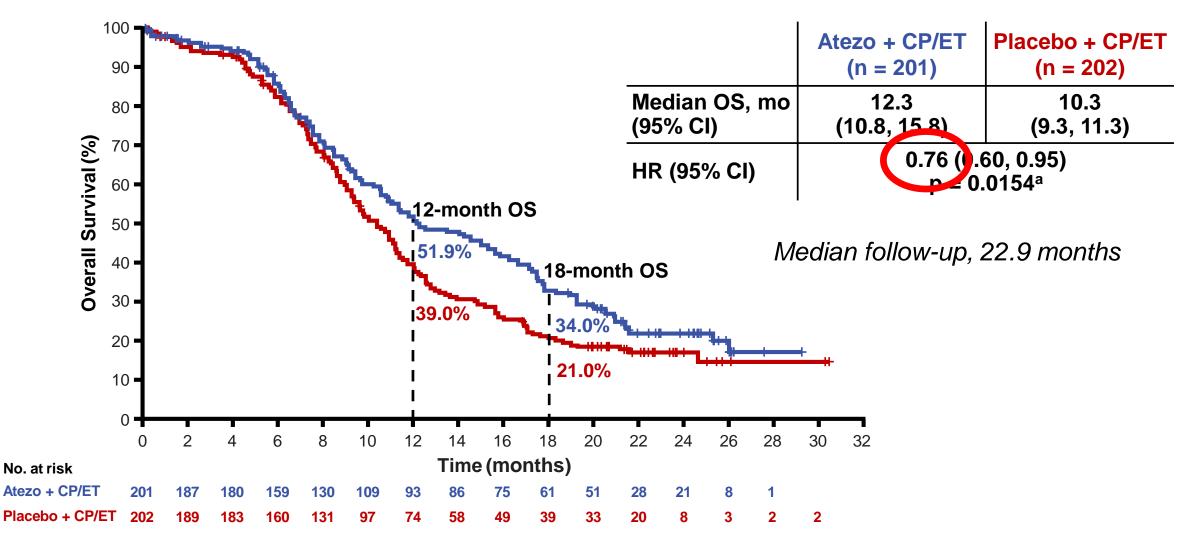
Martin Reck,¹ Stephen V. Liu², Aaron S. Mansfield³, Tony Mok⁴, Arnaud Scherpereel⁵, Niels Reinmuth⁶, Marina Chiara Garassino⁷, Javier De Castro Carpeno⁸, Raffaele Califano⁹, Makoto Nishio¹⁰, Francisco Orlandi¹¹, Jorge Arturo Alatorre Alexander¹², Ticiana Leal¹³, Ying Cheng¹⁴, Jong-Seok Lee¹⁵, Sivuonthanh Lam¹⁶, Mark McCleland¹⁶, Yu Deng¹⁶, See Phan¹⁶, Leora Horn¹⁷

¹Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany; ²Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; ³Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA; ⁴State Key Laboratory of South China, The Chinese University of Hong Kong, China; ⁵University of Lille, CHU Lille, Inserm, U1189 - ONCO-THAI - F-59000 Lille, France; ⁶Thoracic Oncology, Asklepios Clinics Munich-Gauting, Gauting, Germany; ⁷Thoracic Oncology Unit, Instituto Nazionale dei Tumori, Milan, Italy; ⁸Hospital Universitario La Paz, Madrid, Spain; ⁹Department of Medical Oncology, Christie NHS Foundation Trust, Manchester, UK; ¹⁰The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; ¹¹Instituto Nacional del Tórax, Prosalud Oncología, Santiago, Chile; ¹²Health Pharma Professional Research, Mexico City, Mexico; ¹³University of Wisconsin Carbone Cancer Center, Madison, WI; ¹⁴Jilin Cancer Hospital, Jilin, China; ¹⁵Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; ¹⁶Genentech, Inc., South San Francisco, CA, USA; ¹⁷Vanderbilt University Medical Center, Nashville, TN, USA

IMpower133 study design

Atezolizumab, 1200 mg IV, Day 1; Carboplatin, AUC 5 mg/mL/min IV, Day 1; Etoposide, 100 mg/m² IV, Days 1–3. ^a Only patients with treated brain metastases were eligible.

Overall survival



^a Clinical data cutoff date: April 24, 2018, 11 months after the last patient was enrolled. CI, confidence interval; HR, hazard ratio; CP/ET, carboplatin + etoposide.

Download from http://bit.ly/2CvY9iT

Updated OS in ITT

^ap-value is provided for descriptive purpose. CCOD 24 January 2019

Commissie BOM:

PASKWIL 2016 superioriteit

Palliatief, effectiviteit

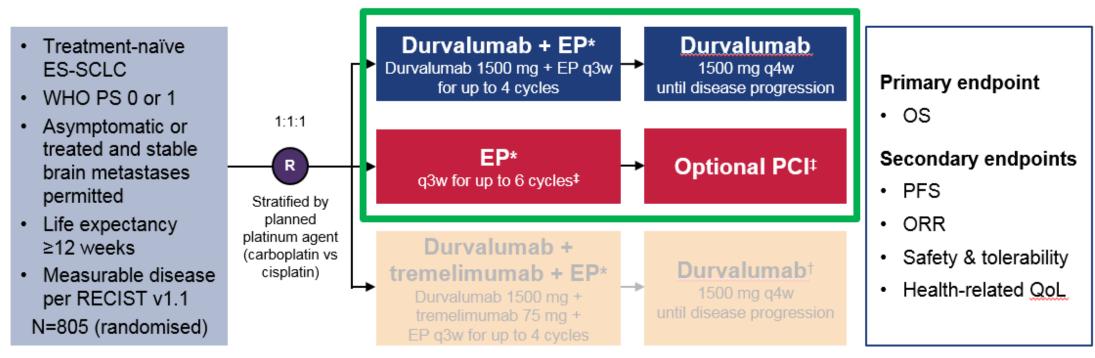
winst totale overleving

- > 12 weken of HR < 0,7
- winst progressievrije overleving
- > 12 weken of HR < 0.7

Gradering volgens ESMO-MCBS (inclusief bijdrage door QoL-analyse)

Bijwerkingen (verschil tussen de behandelarmen)

- lethaal (absoluut) < 5% < 25%
- acuut, ernstig
- chronisch beperkend

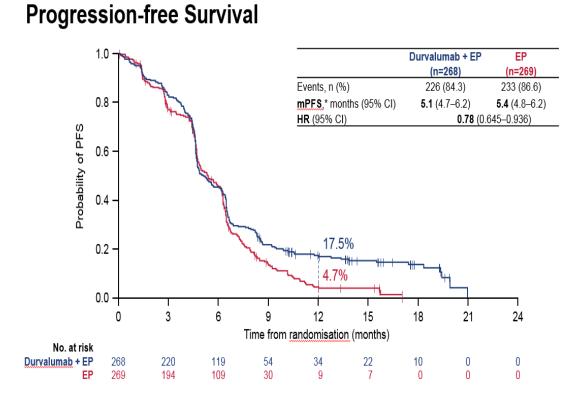

Conclusie

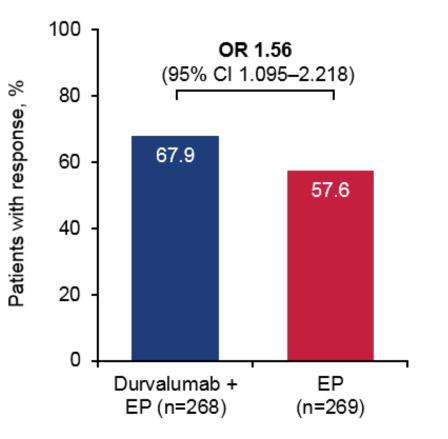
+

De toevoeging van atezolizumab aan standaard eerstelijns chemotherapie met carboplatine en etoposide bij patiënten met SCLC-ES leidt tot een 2,0 maanden langere OS (12,3 versus 10,3 maanden; HR: 0,70 [95%-BI: 0,54-0,90]; P = 0.007) en een verlenging van de PFS van 0.9 maanden (5,2 versus 4,3 maanden; HR: 0,77 [95%-BI: 0,62-0,96]; P = 0,02). Deze resultaten voldoen niet aan de criteria voor een positief advies volgens de PASKWIL-criteria voor palliatieve behandeling. \leftarrow

CASPIAN Study Design

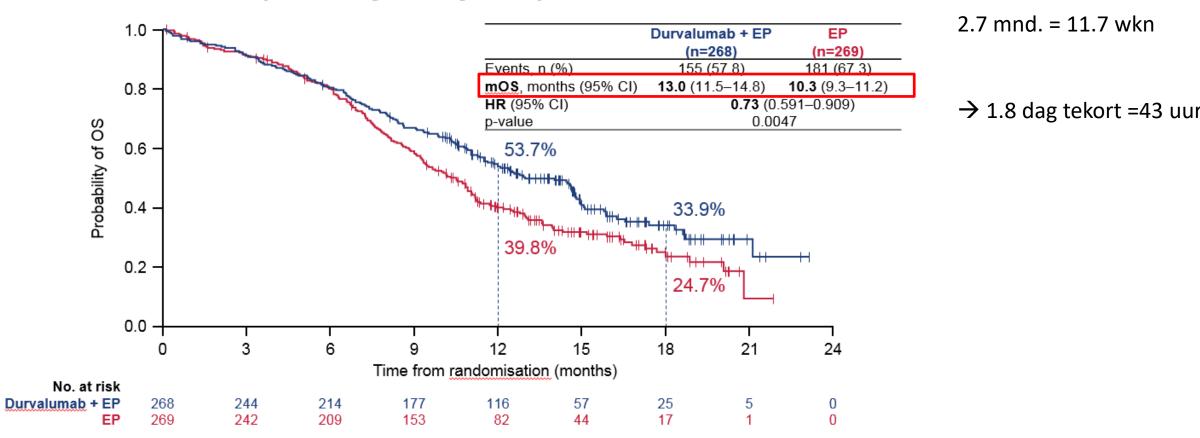
Phase 3, global, randomised, open-label, sponsor-blind multicentre study

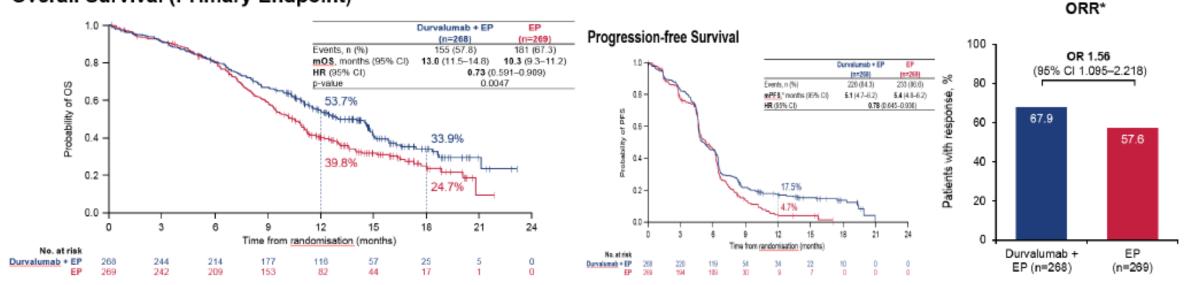



Following preplanned interim analysis by the IDMC,

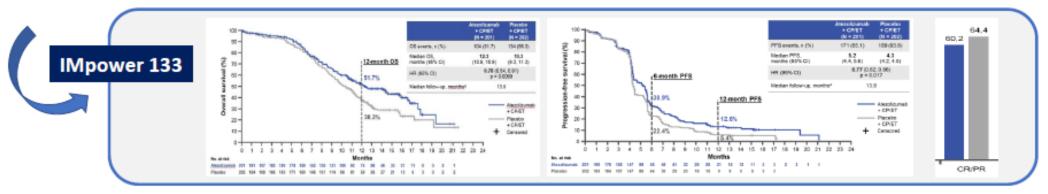
the durvalumab + tremelimumab + EP versus EP comparison continues to final analysis

CASPIAN Study


ORR*


CASPIAN Study

Overall Survival (Primary Endpoint)

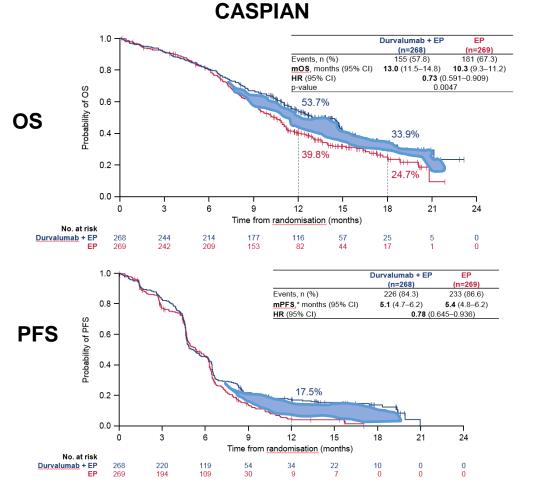


CASPIAN Trial - WCLC - PL02.11

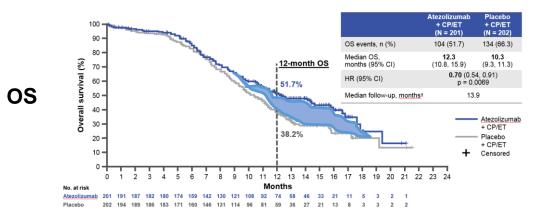
Overall Survival (Primary Endpoint)

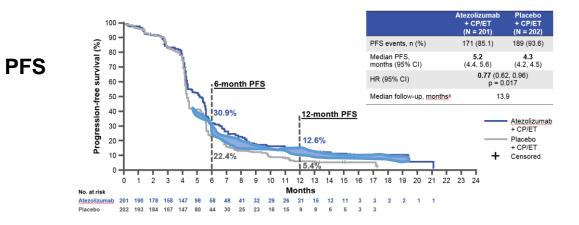
Paz-Ares L et al WCLC 2019

Horn L et al NEJM 2018

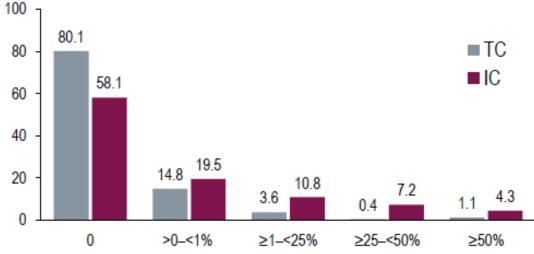

CASPIAN vs IMpower 133

	CAS	<u>SPIAN</u>	IMpower 133		
	Durvalumab+EP (n=268)	EP (n=269)	Atezolizumab +EC (n= 201)	EC + placebo (n=202)	
Median age	62	63	64	64	
Male,%	70.9	68.4	64	65	
White/Asian,%	85.4/13.4	82.2/15.6	81/16	79/18	
PS 0/1,%	36.9/63.1	33.5/66.5	36/64	33/67	
Smoker,%	91.8	94.4	95.5	98.5	
Brain meta,%	10.4	10.0	8	9	
Liver meta,%	40.3	38.7	38	36	
Study design	Open label	Open label	Placebo control	Placebo control	
Carbo/cispla	78.5/24.5	78.2/25.2	100/-	100/-	
No.chemo (med)	4	6	4	4	
PCI,%	-	8	11	10	


CASPIAN vs IMpower 133


	CAS	SPIAN	IMpower 133		
	Durvalumab+EP (n=268)	EP (n=269)	Atezolizumab +EC (n= 201)	EC + placebo (n=202)	
OS,m	13.0 HR	10.3 =0.73	12.3 HR:	10.3 =0.7	
OS at 12m,%	53.7	39.8	51.7	38.2	
PFS, m	5.1 5.4 HR=0.78		5.2 4.3 HR=0.77		
ORR, %	67.9	57.6	60.2	64.4	
DOR, m	5.1	5.1	4.2	3.9	
G 3/4 AEs	61.5	62.4	67.2	63.8	
irAE	19.6	2.6	39.9	24.5	
Biomarker	NA	NA	Only bTMB available		
Poststudy Tx	42	44	50/14/1/5	57/18/7	

Predictive Biomarker to Select Patients Benefit from IO?

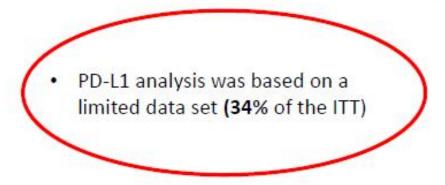

IMpower133



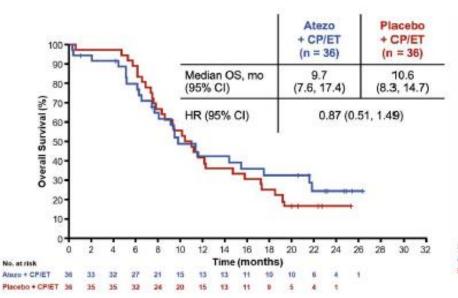
CASPIAN - EXPLORATORY PD-L1 ANALYSIS

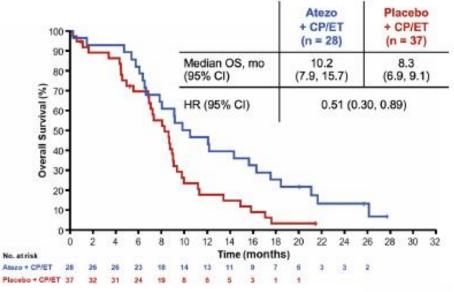
- 94.9% and 77.6% of patients had PD-L1 expression
 <1% on TCs and ICs, respectively
- Due to low PD-L1 expression, a 1% cut-off was used in post-hoc analyses

- Durvalumab + EP was associated with improved OS vs EP, regardless of PD-L1 expression with a 1% cutoff
- No significant interaction was observed with OS based on PD-L1 expression as a continuous variable (TC, p=0.54; IC, p=0.23); similar results were observed with PFS and ORR


Paz Ares L et al, ESMO Proferred Paper 28Sep

HR (95% CI)


- PD-L1 and <u>bTMB</u> biomarkers identify distinct patient populations in ES-SCLC
- · Post-hoc exploratory analysis conducted for OS by PD-L1 expression
 - o The PD-L1 IHC biomarker evaluable population (BEP) comprised 34% of the ITT population
 - o VENTANA SP263 assay was used to determine PD-L1 status on slide sections ≤ 1 year old
 - PD-L1 expression was observed mostly on immune cells (IC), with limited expression on tumour cells (TC)
 - Efficacy analyses were conducted using PD-L1 expression cut-offs of 1% and 5%


bTMB – PD-L1 IHC overlap	PD-L	1 IHC expression	on in ES-S	SCLC (n = 137
bTMB≥10 PD-L1≥1% TC or IC	IC	% BEP (n)	тс	% BEP (n)
28.6% 30.2% 23.8%	< 1%	49.6% (68)	< 1%	94.2% (129)
(n = 36) (n = 38) (n = 30)	≥ 1%	50.4% (69)	≥ 1%	5.8% (8)
% of BEP (n = 126)	≥ 5%	20.4% (28)	≥ 5%	1.5% (2)

IMpower 133-Update on biomarkers

PD-L1 Expression < 1% TC or IC

Median follow-up, 22.9 months

PD-L1 Expression ≥ 1% TC or IC

bTMB did not differentiate benefit of atezolizumab in IMpower133

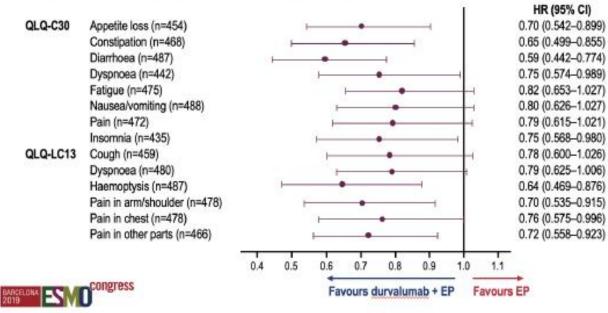
	Median overall survival (months)				
Population	Atezolizumab + CP/ET	Placebo + CP/ET		OS hazard ratio ^a (95% CI)	
Male (n = 261)	12.3	10.9	·	0.74 (0.54, 1.02)	
Female (n = 142)	12.5	9.5	·	0.65 (0.42, 1.00)	
< 65 years (n = 217)	12.1	11.5	·•	0.92 (0.64, 1.32)	
≥ 65 years (n = 186)	12.5	9.6		0.53 (0.36, 0.77)	
ECOG PS 0 (n = 140)	16.6	12 4		0 79 (0 49 1 27)	
Bioma	rker studv is	s not avai	lable in CASPIAN	study !	
No brain metastases (n = 3	· · · · · · · · · · · · · · · · · · ·	10.4		0.68 (0.52, 0.89)	
No blain metastases (n – ,	12.0	10.4		0.00 (0.32, 0.03)	
Liver metastases (n = 149)		7.8		0.81 (0.55, 1.20)	
No liver metastases (n = 2	54) 16.8	11.2		0.64 (0.45, 0.90)	
bTMB < 10 mut/mb (n = 13		9.2		0.70 (0.45, 1.07)	
bTMB ≥ 10 mut/mb (n = 21	14.6	11.2	·•·	0.68 (0.47, 0.97)	
bTMB < 16 mut/mb (n = 27		9.9	• • •••	0.71 (0.52, 0.98)	
bTMB ≥ 16 mut/mb (n = 80	0) 17.8	11.9	• • • • • • • • • • • • • • • • • • • •	0.63 (0.35, 1.15)	
ITT (N = 403)	12.3	10.3	_	0.70 (0.54, 0.91)	
Clinical data cutoff date: April 2	24, 2018. bTMB (blood tumor mutationa	al burden)	1.0	2.5	
assessed as reported in Gand	ara DR, et al. Nat Med, 2018. for patient subgroups and stratified for		Atezolizumab better Placebo b	etter	

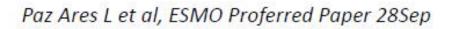
^a Hazard ratios are unstratified for patient subgroups and stratified for the ITT.

CASPIAN - PATTERNS OF FIRST PROGRESSION

Types of progression

Sites of new lesions (>5% patients)


	Durvaluma b + EP (N=268)	EP (N=269)		Durvalumab + EP (N=268)	EP (N=269)
Total progression events, n (%)	226 (84.3)	233 (86.6)	New lesions, n (%)	111 (41.4)	127 (47.2)
RECIST-defined progression, n (%)	192 (71.6)	194 (72.1)	Lung	23 <mark>(</mark> 8.6)	41 (15.2)
Target lesions	115 (42.9)	106 (39.4)	Brain/CNS	31 (11.6)	31 (11.5)
Non-target lesions	66 (24.6)	61 (22.7)	Liver	15 (5.6)	24 (8.9)
New lesions	111 (41.4)	127 (47.2)	Bone	12 (4.5)	19 (7.1)
Death in absence of progression, n (%)	34 (12.7)	39 (14.5)	Regional lymph nodes	15 (5.6)	12 (4.5)


Numerically fewer patients developed new lesions at first progression with durvalumab + EP versus EP

No difference in the incidence of new brain/CNS lesions between arms

CASPIAN - TIME TO DETERIORATION

Durvalumab + EP was favoured across all symptoms



Vragen voor checkpoint inhibitie bij SCLC

- Caspian studie: immature data. Worden deze beter?
- Data arm: durva/tremilumumab + chemo?
- Identificeren van een subgroep die op immuuntherapie respondeert?
- Is een biomarker wel haalbaar in de dagelijkse praktijk?
- Wat zijn gevolgen als we in Nederland geen immuuntherapie geven bij SCLC?

